Scalable Monocular SLAM

Ethan Eade Dr. Tom Drummond

Machine Intelligence Laboratory Cambridge University ee231@eng.cam.ac.uk

Simultaneous Localization and Mapping

Goal: Estimate structure and motion online.

Simultaneous Localization and Mapping

Goal: Estimate structure and motion online.

Causal

Only observations up to the current time are available **Time-Bounded**

Each processing step must complete in limited time

Contributions

Application of Rao-Blackwellized Particle Filtering: Frame-rate monocular SLAM with hundreds of landmarks

Novel Partial Initialization Algorithm:

- Efficient estimation for new landmarks
- Use of new landmark observations to constrain pose

Conventional Approach: Kalman Filter SLAM

State Estimate

Gaussian for pose and landmarks

O(N²) space for N landmarks

Filter Update

Linearized Models

Full covariance is updated

O(N²) time

Landmarks are dependent when the camera trajectory is marginalized out

FastSLAM

[Montemerlo et al.]

State Estimate

M sampled trajectories

Independent Gaussians for N landmarks, for each trajectory

O(MN) space

Filter Update

Sample M new trajectories

Update **only** observed landmarks

O(M) time/observation

Rao-Blackwellized Particle Filter: particles for poses, independent Gaussians for landmarks

State Representation

Observing Landmarks

Observing Landmarks

Conventionally, only fully initialized landmarks are used to estimate motion.

However, observations of partially initialized landmarks have two dimensions:

- One gives *depth* information
- The other helps constrain camera pose through the *epipolar constraint*

We don't need to discard this information!

4 fully initialized

4 fully + 5 partially initialized

Results: 400+ landmarks

Number of Landmarks

Contributions

Application of Rao-Blackwellized Particle Filtering: Frame-rate monocular SLAM with hundreds of landmarks

Novel Partial Initialization Algorithm:

- Efficient estimation for new landmarks
- Use of new landmark observations to constrain pose

Results

Models

- Pose as element of SE(3)
- Constant velocity model in camera frame:

$$C_{new} = \exp(\mathbf{v}) * \mathbf{C}$$

- Measurements in camera plane:
 p = project(C * x) = project(Rx + t)
- Calibrated camera with quintic radial distortion model

Problems

- Because FastSLAM encodes landmark correlations in the particle cloud, a small number of particles may be insufficient to close loops.
- Without any direct measurement of scale after initialization, maps can accrue local scale error.
- Very large scale mapping will require active loop closing.

Updating the Pose Distribution

Probabilistic SLAM

Probabilistic SLAM

FAST Corners Ed Rosten, Tom Drummond

Rosten and Drummond. Fusing points and lines for high performance tracking. ICCV '05.

Rosten and Drummond. Machine learning for highspeed corner detection. ECCV '06.

Find this man.