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1 Introduction

This document computes

[
∂

∂ε

∣∣
ε=0

]
log
(

exp (x + ε) · exp (x)−1
)

(1)

where exp and log are the exponential mapping and its inverse in a Lie group, and x and ε are
elements of the associated Lie algebra.

2 Definitions

Let G be a Lie group, with associated Lie algebra g. Then the exponential map takes algebra elements
to group elements:

exp : g → G (2)

exp (x) = I + x +
1
2!

x2 +
1
3!

x3 + ... (3)

The adjoint representation Adj of the group linearly transforms the exponential mapping of an alge-
bra element through left multiplication by a group element:

x ∈ g (4)
Y ∈ G (5)

Y · exp (x) = exp (AdjY · x) ·Y (6)

The adjoint operator in the algebra is the linear operator representing the Lie bracket:

x, y ∈ g (7)
adx · y = x · y− y · x (8)
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The adjoint operator commutes with the exponential map:

Adjexp(y) = exp
(
ady
)

(9)

We define differentiation of a function f from algebra to group as follows:

f : g → G (10)
∂ f (x)

∂x
: g → g (11)

∂ f (x)
∂x

≡
[

∂

∂ε

∣∣
ε=0

]
log
(

f (x + ε) · f (x)−1
)

(12)

In this document, we’re interested in Dexp, the derivative of exp:

Dexp : g → g (13)

Dexp (x) =
∂ exp (x)

∂x
(14)

3 Derivation of a formula for Dexp (x)

This isn’t a rigorous derivation (the epsilon-delta proofs required for the two approximation steps
are omitted), but I find it intuitively pleasing. A more rigorous approach would use theorems about
integrated flows on continuous vector fields.

Define F to be exp of x modified by an algebra element ε:

ε ∈ g (15)
F (x, ε) = exp (x + ε) (16)

We can also take the product of multiple smaller group elements on the same geodesic:

F (x, ε) =
N

∏
i=1

exp
(

1
N
· (x + ε)

)
(17)

Letting the number of steps N go arbitrarily large, we can send 1
N2 → 0. Then we have, to arbitrary

accuracy:

F (x, ε) ≈
N

∏
i=1

exp
( x

N

)
· exp

( ε

N

)
(18)

Each factor of exp
(

ε
N
)

can be shifted to the left side of the product by multiplying by the adjoint an
appropriate number of times:
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AN ≡ Adjexp( x
N )

(19)

F (x, ε) ≈
[

exp
(

1
N
· AN · ε

)
· exp

(
1
N
· A2

N · ε
)
· . . . · exp

(
1
N
· AN

N · ε
)]
·
[

N

∏
i=1

exp
( x

N

)]
(20)

=

[
N

∏
i=1

exp
(

1
N
· Ai

N · ε
)]
·
[

N

∏
i=1

exp
( x

N

)]
(21)

=

[
N

∏
i=1

exp
(

1
N
· Ai

N · ε
)]
· exp (x) (22)

By choosing ε sufficiently small, the product of exponentials is arbitrarily well approximated by the
exponential of a sum:

F (x, ε) = exp

(
1
N
·

N

∑
i=1

Ai
N · ε + O

(
‖ε‖2

))
· exp (x) (23)

We can use the properties of the adjoint to rewrite AN :

AN ≡ Adjexp( x
N )

(24)

= exp
(

ad x
N

)
(25)

= exp
(

1
N
· adx

)
(26)

for a Lie group

Taking the ith power:

Ai
N = exp

(
i
N
· adx

)
(27)

Thus as N → ∞, the sum becomes an integral:

1
N
·

N

∑
i=1

Ai
N =

1
N
·

N

∑
i=1

exp
(

i
N
· adx

)
(28)

→
ˆ 1

0
exp (t · adx) · dt (29)

The integration can be performed on the power series of the matrix exponential.

1
N
·

N

∑
i=1

Ai
N =

ˆ 1

0

(
∞

∑
i=0

ti · adi
x

i!

)
· dt (30)

=

(
∞

∑
i=0

ti+1adi
x

(i + 1)!

) ∣∣1
0 (31)

=
∞

∑
i=0

adi
x

(i + 1)!
(32)
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Substituting into Eq.23:

F (x, ε) = exp

((
∞

∑
i=0

adi
x

(i + 1)!

)
· ε + O

(
‖ε‖2

))
· exp (x)

Using the definition from Eq.14,

Dexp (x) =

[
∂

∂ε

∣∣
ε=0

]
log
(

F (x, ε) · exp (x)−1
)

(33)

=

[
∂

∂ε

∣∣
ε=0

]( ∞

∑
i=0

adi
x

(i + 1)!

)
· ε + O

(
‖ε‖2

)
(34)

=
∞

∑
i=0

adi
x

(i + 1)!
(35)

4 Derivative of log

When x = log (exp (x)), we can invert the function being differentiated in Eq.14:

δ ≡ f (ε) = log
(

exp (x + ε) · exp (x)−1
)

(36)

ε = log (exp (δ) · exp (x))− x (37)

The second term vanishes when differentiating by δ:

Dlog (x) ≡
[

∂

∂δ

∣∣
δ=0

]
log (exp (δ) · exp (x)) (38)

In this bijective region of the function, the derivative of the inverse is the inverse of the derivative:

∂ε

∂δ
=

[
∂δ

∂ε

]−1
(39)

Dlog (x) = D−1
exp (x) (40)

5 Special Cases

The infinite series of Eq. 35 can be expressed in closed form in some Lie groups.

4



5.1 SO(3)

5.1.1 Derivative of exp

The elements of the algebra so(3) are 3× 3 skew-symmetric matrices, and the adjoint representation
is identical:

ω ∈ <3 (41)

ω× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ∈ so(3) (42)

adω = ω× (43)

ad3
ω = −‖ω‖2 · adω (44)

Because the higher powers of ad collapse back to lower powers, we can collect terms in the series:

Dexp (ω) = I +

(
∞

∑
i=0

(−1)i · ‖ω‖2i

(2i + 2)!

)
· adω +

(
∞

∑
i=0

(−1)i · ‖ω‖2i

(2i + 3)!

)
· ad2

ω (45)

= I +

(
1− cos ‖ω‖
‖ω‖2

)
·ω× +

1− sin‖ω‖
‖ω‖

‖ω‖2

 ·ω2
× (46)

Note that

ω2
× = ωωT − ‖ω‖2 I (47)

So Dexp (ω) can be rewritten:

Dexp (ω) = I +

(
1− cos ‖ω‖
‖ω‖2

)
·ω× +

1− sin‖ω‖
‖ω‖

‖ω‖2

 · (ωωT − ‖ω‖2 I
)

(48)

=
sin ‖ω‖
‖ω‖ · I +

(
1− cos ‖ω‖
‖ω‖2

)
·ω× +

1− sin‖ω‖
‖ω‖

‖ω‖2

 ·ωωT (49)

We label the coefficients for convenience:

aθ =
sin θ

θ
(50)

bθ =
1− cos θ

θ2 (51)

cθ =
1− aθ

θ2 (52)

Dexp (ω) = a‖ω‖ · I + b‖ω‖ ·ω× + c‖ω‖ ·ωωT (53)
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5.1.2 Derivative of log

Recall that in the bijective region of exp and log,

Dlog (ω) = D−1
exp (ω) (54)

For ‖ω‖ < 2π, a closed-form inverse exists for Dexp (ω):

D−1
exp (ω) = I− 1

2
ω× + e‖ω‖ω

2
× (55)

eθ =
bθ − 2cθ

2aθ
(56)

=
bθ − 1

2 aθ

1− cos θ
(57)

Depending on the value of θ, the more convenient of Eq. 56 or Eq.57 should be used to compute eθ .

5.2 SE(3)

5.2.1 Derivative of exp

Again, the higher powers of ad can be expressed in terms of lower powers:

u, ω ∈ <3 (58)
θ ≡ ‖ω‖ (59)

x =

(
ω× u
0 0

)
∈ se (3) (60)

adx =

(
ω× u×
0 ω×

)
(61)

ad2
x =

(
ω2
× (ω×u× + u×ω×)

0 ω2
×

)
(62)

ad3
x = −θ2 · adx − 2

(
ωTu

)( 0 ω×
0 0

)
(63)

Collecting the terms, we have:

Q (ω) ≡
(

aθ − 2bθ

θ2

)
·ωx +

(
bθ − 3cθ

θ2

)
·ω2
× (64)

Dexp (x) = I + aθ · adx + cθ · ad2
x +

(
ωTu

)
·
(

0 Q (ω)
0 0

)
(65)

=

(
Dexp (ω)

(
bθ · u× + cθ · (ω×u× + u×ω×) +

(
ωTu

)
·Q (ω)

)
0 Dexp (ω)

)
(66)

Using the identity
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ω×u× + u×ω× = ωuT + uωT − 2
(

ωTu
)

I (67)

...we can rewrite Dexp (x):

W (ω) ≡ −2cθ · I + Q (ω) (68)

= −2cθ · I +
(

aθ − 2bθ

θ2

)
·ω× +

(
bθ − 3cθ

θ2

)
·
(

ωωT − θ2I
)

(69)

= (cθ − bθ) · I +
(

aθ − 2bθ

θ2

)
·ω× +

(
bθ − 3cθ

θ2

)
·ωωT (70)

Dexp (x) =

(
Dexp (ω)

(
bθ · u× + cθ ·

(
ωuT + uωT)+ (ωTu

)
·W (ω)

)
0 Dexp (ω)

)
(71)

5.2.2 Derivative of log

A square block matrix M with the form -

M =

(
A B
0 A

)
(72)

...has an inverse:

M−1 =

(
A−1 −A−1 · B · A−1

0 A−1

)
(73)

Thus, when ‖ω‖ < 2π, a closed form exists for D−1
exp (x) using D−1

exp (ω) as given by Eq.55:

B ≡ bθ · u× + cθ ·
(

ωuT + uωT
)
+
(

ωTu
)
·W (ω) (74)

D−1
exp (x) =

(
D−1

exp (ω) −D−1
exp (ω) · B · D−1

exp (ω)

0 D−1
exp (ω)

)
(75)

5.3 SE(2)

5.3.1 Derivative of exp

Higher powers of ad collapse onto lower ones in se (2):

 x
y
θ

 ∈ <3 (76)

m =

 0 −θ x
θ 0 y
0 0 0

 ∈ se (2) (77)
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adm =

 0 −θ y
θ 0 −x
0 0 0

 (78)

ad2
m =

 −θ2 0 θx
0 −θ2 θy
0 0 0

 (79)

ad3
m = −θ3adm (80)

Collecting the terms:

Dexp (m) = I +

(
∞

∑
i=0

(−1)i · θ2i

(2i + 2)!

)
adm +

(
∞

∑
i=0

(−1)i · θ2i

(2i + 3)!

)
ad2

m (81)

= I +
(

1− cos θ

θ2

)
· adm +

(
1− sin θ

θ

θ2

)
· ad2

m (82)

=

 aθ −θbθ (cθ x + bθy)
θbθ aθ (cθy− bθ x)
0 0 1

 (83)

5.3.2 Derivative of log

Writing Dexp from Eq. 83 in block form gives:

Dexp =

(
A v
0 1

)
(84)

...with inverse:

Dlog =

(
A−1 −A−1 · v

0 1

)
(85)

5.4 Sim(2)

5.4.1 Derivative of exp

In sim (2), higher powers of ad do not collapse onto lower ones:


x
y
θ
λ

 ∈ <4 (86)

m =

 0 −θ x
θ 0 y
0 0 −λ

 ∈ sim (2) (87)
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adm =


λ −θ y −x
θ λ −x −y
0 0 0 0
0 0 0 0

 (88)

=

(
Q P
0 0

)
(89)

adn
m =

(
Qn Qn−1 · P
0 0

)
(90)

To compute Dexp we can diagonalize Q by eigendecomposition (i ≡
√
−1):

Q = V · D ·V∗ (91)

V ≡ 1√
2

(
1 1
i −i

)
(92)

E ≡
(

λ− θi
λ + θi

)
(93)

Now we can express Dexp in terms of E and its exponential:

Dexp (m) =
∞

∑
j=0

adj
m

(j + 1)!
(94)

=
∞

∑
j=0

1
(j + 1)!

(
Qj Qj−1 · P
0 0

)
(95)

=

( [
∑∞

j=0
Qj

(j+1)!

] [(
∑∞

j=0
Qj

(j+2)!

)
· P
]

0 0

)
(96)

=

( [
V ·
(

∑∞
j=0

Ej

(j+1)!

)
·V∗

] [
V ·
(

∑∞
j=0

Ej

(j+2)!

)
·V∗ · P

]
0 0

)
(97)

=

( [
V · E−1 · (exp (E)− I) ·V∗

] [
V · E−2 · (exp (E)− I− E) ·V∗ · P

]
0 0

)
(98)

When it exists, E−1 has a simple form:

E−1 =
1

λ2 + θ2

(
λ + θi

λ− θi

)
(99)

Multiplying through yields only real elements:

Dexp (m) =

 (
p −q
q p

) (
g −h
h g

)
· P

0 I

 (100)

p ≡ 1
λ2 + θ2

[
eλ · (λ cos θ + θ sin θ)− λ

]
(101)
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q ≡ 1
λ2 + θ2

[
eλ · (λ sin θ − θ cos θ) + θ

]
(102)

g ≡ 1
λ2 + θ2

[
1

λ2 + θ2 · (λp + θq)− λ

]
(103)

h ≡ 1
λ2 + θ2

[
1

λ2 + θ2 · (λq− θp) + θ

]
(104)

When λ2 + θ2 → 0, the Taylor expansion should be used instead:

p ≡ 1 +
a
2

(105)

q ≡ b
2

(106)

g ≡ 1
2
+

a
6

(107)

h ≡ b
6

(108)

5.4.2 Derivative of log

Writing Dexp from Eq. 100 in block form gives:

Dexp =

(
A B
0 I

)
(109)

...with inverse:

Dlog =

(
A−1 −A−1 · B

0 I

)
(110)
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