Derivative of the Exponential Map

Ethan Eade

November 12, 2018

1 Introduction

This document computes

$$
\begin{equation*}
\left[\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\right] \log \left(\exp (x+\epsilon) \cdot \exp (x)^{-1}\right) \tag{1}
\end{equation*}
$$

where exp and log are the exponential mapping and its inverse in a Lie group, and x and ϵ are elements of the associated Lie algebra.

2 Definitions

Let \mathcal{G} be a Lie group, with associated Lie algebra \mathfrak{g}. Then the exponential map takes algebra elements to group elements:

$$
\begin{align*}
\exp : \mathfrak{g} & \rightarrow \mathcal{G} \tag{2}\\
\exp (x) & =\mathbf{I}+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots \tag{3}
\end{align*}
$$

The adjoint representation Adj of the group linearly transforms the exponential mapping of an algebra element through left multiplication by a group element:

$$
\begin{align*}
x & \in \mathfrak{g} \tag{4}\\
Y & \in \mathcal{G} \tag{5}\\
Y \cdot \exp (x) & =\exp \left(\operatorname{Adj}_{Y} \cdot x\right) \cdot Y \tag{6}
\end{align*}
$$

The adjoint operator in the algebra is the linear operator representing the Lie bracket:

$$
\begin{align*}
x, y & \in \mathfrak{g} \tag{7}\\
\operatorname{ad}_{x} \cdot y & =x \cdot y-y \cdot x \tag{8}
\end{align*}
$$

The adjoint operator commutes with the exponential map:

$$
\begin{equation*}
\operatorname{Adj}_{\exp (y)}=\exp \left(\mathrm{ad}_{y}\right) \tag{9}
\end{equation*}
$$

We define differentiation of a function f from algebra to group as follows:

$$
\begin{align*}
f: \mathfrak{g} & \rightarrow \mathcal{G} \tag{10}\\
\frac{\partial f(x)}{\partial x}: \mathfrak{g} & \rightarrow \mathfrak{g} \tag{11}\\
\frac{\partial f(x)}{\partial x} & \equiv\left[\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\right] \log \left(f(x+\epsilon) \cdot f(x)^{-1}\right) \tag{12}
\end{align*}
$$

In this document, we're interested in $D_{\exp }$, the derivative of exp:

$$
\begin{align*}
D_{\exp }: \mathfrak{g} & \rightarrow \mathfrak{g} \tag{13}\\
D_{\exp }(x) & =\frac{\partial \exp (x)}{\partial x} \tag{14}
\end{align*}
$$

3 Derivation of a formula for $D_{\exp }(x)$

This isn't a rigorous derivation (the epsilon-delta proofs required for the two approximation steps are omitted), but I find it intuitively pleasing. A more rigorous approach would use theorems about integrated flows on continuous vector fields.

Define F to be exp of x modified by an algebra element ϵ :

$$
\begin{align*}
\epsilon & \in \mathfrak{g} \tag{15}\\
F(x, \epsilon) & =\exp (x+\epsilon) \tag{16}
\end{align*}
$$

We can also take the product of multiple smaller group elements on the same geodesic:

$$
\begin{equation*}
F(x, \epsilon)=\prod_{i=1}^{N} \exp \left(\frac{1}{N} \cdot(x+\epsilon)\right) \tag{17}
\end{equation*}
$$

Letting the number of steps N go arbitrarily large, we can send $\frac{1}{N^{2}} \rightarrow 0$. Then we have, to arbitrary accuracy:

$$
\begin{equation*}
F(x, \epsilon) \approx \prod_{i=1}^{N} \exp \left(\frac{x}{N}\right) \cdot \exp \left(\frac{\epsilon}{N}\right) \tag{18}
\end{equation*}
$$

Each factor of $\exp \left(\frac{\epsilon}{N}\right)$ can be shifted to the left side of the product by multiplying by the adjoint an appropriate number of times:

$$
\begin{align*}
A_{N} & \equiv \operatorname{Adj}_{\exp \left(\frac{x}{N}\right)} \tag{19}\\
F(x, \epsilon) & \approx\left[\exp \left(\frac{1}{N} \cdot A_{N} \cdot \epsilon\right) \cdot \exp \left(\frac{1}{N} \cdot A_{N}^{2} \cdot \epsilon\right) \cdot \ldots \cdot \exp \left(\frac{1}{N} \cdot A_{N}^{N} \cdot \epsilon\right)\right] \cdot\left[\prod_{i=1}^{N} \exp \left(\frac{x}{N}\right)\right] \tag{20}\\
& =\left[\prod_{i=1}^{N} \exp \left(\frac{1}{N} \cdot A_{N}^{i} \cdot \epsilon\right)\right] \cdot\left[\prod_{i=1}^{N} \exp \left(\frac{x}{N}\right)\right] \tag{21}\\
& =\left[\prod_{i=1}^{N} \exp \left(\frac{1}{N} \cdot A_{N}^{i} \cdot \epsilon\right)\right] \cdot \exp (x) \tag{22}
\end{align*}
$$

By choosing ϵ sufficiently small, the product of exponentials is arbitrarily well approximated by the exponential of a sum:

$$
\begin{equation*}
F(x, \epsilon)=\exp \left(\frac{1}{N} \cdot \sum_{i=1}^{N} A_{N}^{i} \cdot \epsilon+O\left(\|\epsilon\|^{2}\right)\right) \cdot \exp (x) \tag{23}
\end{equation*}
$$

We can use the properties of the adjoint to rewrite A_{N} :

$$
\begin{align*}
A_{N} & \equiv \operatorname{Adj}_{\exp \left(\frac{x}{N}\right)} \tag{24}\\
& =\exp \left(\operatorname{ad}_{\frac{x}{N}}\right) \tag{25}\\
& =\exp \left(\frac{1}{N} \cdot \operatorname{ad}_{x}\right) \tag{26}
\end{align*}
$$

for a Lie group
Taking the $i^{\text {th }}$ power:

$$
\begin{equation*}
A_{N}^{i}=\exp \left(\frac{i}{N} \cdot \mathrm{ad}_{x}\right) \tag{27}
\end{equation*}
$$

Thus as $N \rightarrow \infty$, the sum becomes an integral:

$$
\begin{align*}
\frac{1}{N} \cdot \sum_{i=1}^{N} A_{N}^{i} & =\frac{1}{N} \cdot \sum_{i=1}^{N} \exp \left(\frac{i}{N} \cdot \mathrm{ad}_{x}\right) \tag{28}\\
& \rightarrow \int_{0}^{1} \exp \left(t \cdot \mathrm{ad}_{x}\right) \cdot \mathrm{d} t \tag{29}
\end{align*}
$$

The integration can be performed on the power series of the matrix exponential.

$$
\begin{align*}
\frac{1}{N} \cdot \sum_{i=1}^{N} A_{N}^{i} & =\int_{0}^{1}\left(\sum_{i=0}^{\infty} \frac{t^{i} \cdot \mathrm{ad}_{x}^{i}}{i!}\right) \cdot \mathrm{d} t \tag{30}\\
& =\left.\left(\sum_{i=0}^{\infty} \frac{t^{i+1} \mathrm{ad}_{x}^{i}}{(i+1)!}\right)\right|_{0} ^{1} \tag{31}\\
& =\sum_{i=0}^{\infty} \frac{\mathrm{ad}_{x}^{i}}{(i+1)!} \tag{32}
\end{align*}
$$

Substituting into Eq.23:

$$
F(x, \epsilon)=\exp \left(\left(\sum_{i=0}^{\infty} \frac{\operatorname{ad}_{x}^{i}}{(i+1)!}\right) \cdot \epsilon+O\left(\|\epsilon\|^{2}\right)\right) \cdot \exp (x)
$$

Using the definition from Eq. 14 ,

$$
\begin{align*}
D_{\exp }(x) & =\left[\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\right] \log \left(F(x, \epsilon) \cdot \exp (x)^{-1}\right) \tag{33}\\
& =\left[\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\right]\left(\sum_{i=0}^{\infty} \frac{\operatorname{ad}_{x}^{i}}{(i+1)!}\right) \cdot \epsilon+O\left(\|\epsilon\|^{2}\right) \tag{34}\\
& =\sum_{i=0}^{\infty} \frac{\operatorname{ad}_{x}^{i}}{(i+1)!} \tag{35}
\end{align*}
$$

4 Derivative of log

When $x=\log (\exp (x))$, we can invert the function being differentiated in Eq.14:

$$
\begin{align*}
\delta \equiv f(\epsilon) & =\log \left(\exp (x+\epsilon) \cdot \exp (x)^{-1}\right) \tag{36}\\
\epsilon & =\log (\exp (\delta) \cdot \exp (x))-x \tag{37}
\end{align*}
$$

The second term vanishes when differentiating by δ :

$$
\begin{equation*}
D_{\log }(x) \equiv\left[\left.\frac{\partial}{\partial \delta}\right|_{\delta=0}\right] \log (\exp (\delta) \cdot \exp (x)) \tag{38}
\end{equation*}
$$

In this bijective region of the function, the derivative of the inverse is the inverse of the derivative:

$$
\begin{align*}
\frac{\partial \epsilon}{\partial \delta} & =\left[\frac{\partial \delta}{\partial \epsilon}\right]^{-1} \tag{39}\\
D_{\log }(x) & =D_{\exp }^{-1}(x) \tag{40}
\end{align*}
$$

5 Special Cases

The infinite series of Eq. 35 can be expressed in closed form in some Lie groups.

5.1 SO(3)

5.1.1 Derivative of exp

The elements of the algebra $\mathfrak{s o}(3)$ are 3×3 skew-symmetric matrices, and the adjoint representation is identical:

$$
\begin{align*}
\omega & \in \Re^{3} \tag{41}\\
\omega_{\times} & =\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) \in \mathfrak{s o}(3) \tag{42}\\
\operatorname{ad}_{\omega} & =\omega_{\times} \tag{43}\\
\operatorname{ad}_{\omega}^{3} & =-\|\omega\|^{2} \cdot \operatorname{ad}_{\omega} \tag{44}
\end{align*}
$$

Because the higher powers of ad collapse back to lower powers, we can collect terms in the series:

$$
\begin{align*}
D_{\exp }(\omega) & =\mathbf{I}+\left(\sum_{i=0}^{\infty} \frac{(-1)^{i} \cdot\|\omega\|^{2 i}}{(2 i+2)!}\right) \cdot \operatorname{ad}_{\omega}+\left(\sum_{i=0}^{\infty} \frac{(-1)^{i} \cdot\|\omega\|^{2 i}}{(2 i+3)!}\right) \cdot \operatorname{ad}_{\omega}^{2} \tag{45}\\
& =\mathbf{I}+\left(\frac{1-\cos \|\omega\|}{\|\omega\|^{2}}\right) \cdot \omega_{\times}+\left(\frac{1-\frac{\sin \|\omega\|}{\|\omega\|}}{\|\omega\|^{2}}\right) \cdot \omega_{\times}^{2} \tag{46}
\end{align*}
$$

Note that

$$
\begin{equation*}
\omega_{\times}^{2}=\omega \omega^{T}-\|\omega\|^{2} \mathbf{I} \tag{47}
\end{equation*}
$$

So $D_{\exp }(\omega)$ can be rewritten:

$$
\begin{align*}
D_{\exp }(\omega) & =\mathbf{I}+\left(\frac{1-\cos \|\omega\|}{\|\omega\|^{2}}\right) \cdot \omega_{\times}+\left(\frac{1-\frac{\sin \|\omega\|}{\|\omega\|}}{\|\omega\|^{2}}\right) \cdot\left(\omega \omega^{T}-\|\omega\|^{2} \mathbf{I}\right) \tag{48}\\
& =\frac{\sin \|\omega\|}{\|\omega\|} \cdot \mathbf{I}+\left(\frac{1-\cos \|\omega\|}{\|\omega\|^{2}}\right) \cdot \omega_{\times}+\left(\frac{1-\frac{\sin \|\omega\|}{\|\omega\|}}{\|\omega\|^{2}}\right) \cdot \omega \omega^{T} \tag{49}
\end{align*}
$$

We label the coefficients for convenience:

$$
\begin{align*}
a_{\theta} & =\frac{\sin \theta}{\theta} \tag{50}\\
b_{\theta} & =\frac{1-\cos \theta}{\theta^{2}} \tag{51}\\
c_{\theta} & =\frac{1-a_{\theta}}{\theta^{2}} \tag{52}\\
D_{\exp }(\omega) & =a_{\|\omega\|} \cdot \mathbf{I}+b_{\|\omega\|} \cdot \omega_{\times}+c_{\|\omega\|} \cdot \omega \omega^{T} \tag{53}
\end{align*}
$$

5.1.2 Derivative of \log

Recall that in the bijective region of exp and log,

$$
\begin{equation*}
D_{\log }(\omega)=D_{\exp }^{-1}(\omega) \tag{54}
\end{equation*}
$$

For $\|\omega\|<2 \pi$, a closed-form inverse exists for $D_{\exp }(\omega)$:

$$
\begin{align*}
D_{\exp }^{-1}(\omega) & =\mathbf{I}-\frac{1}{2} \omega_{\times}+e_{\|\omega\|} \omega_{\times}^{2} \tag{55}\\
e_{\theta} & =\frac{b_{\theta}-2 c_{\theta}}{2 a_{\theta}} \tag{56}\\
& =\frac{b_{\theta}-\frac{1}{2} a_{\theta}}{1-\cos \theta} \tag{57}
\end{align*}
$$

Depending on the value of θ, the more convenient of Eq. 56 or Eq. 57 should be used to compute e_{θ}.

5.2 SE(3)

5.2.1 Derivative of exp

Again, the higher powers of ad can be expressed in terms of lower powers:

$$
\begin{align*}
u, \omega & \in \Re^{3} \tag{58}\\
\theta & \equiv\|\omega\| \tag{59}\\
x & =\left(\begin{array}{cc}
\omega_{\times} & u \\
0 & 0
\end{array}\right) \in \mathfrak{s e}(3) \tag{60}\\
\operatorname{ad}_{x} & =\left(\begin{array}{cc}
\omega_{\times} & u_{\times} \\
0 & \omega_{\times}
\end{array}\right) \tag{61}\\
\operatorname{ad}_{x}^{2} & =\left(\begin{array}{cc}
\omega_{\times}^{2} & \left(\omega_{\times} u_{\times}+u_{\times} \omega_{\times}\right) \\
0 & \omega_{\times}^{2}
\end{array}\right) \tag{62}\\
\operatorname{ad}_{x}^{3} & =-\theta^{2} \cdot \operatorname{ad}_{x}-2\left(\omega^{T} u\right)\left(\begin{array}{cc}
0 & \omega_{\times} \\
0 & 0
\end{array}\right) \tag{63}
\end{align*}
$$

Collecting the terms, we have:

$$
\begin{align*}
Q(\omega) & \equiv\left(\frac{a_{\theta}-2 b_{\theta}}{\theta^{2}}\right) \cdot \omega_{x}+\left(\frac{b_{\theta}-3 c_{\theta}}{\theta^{2}}\right) \cdot \omega_{\times}^{2} \tag{64}\\
D_{\exp }(x) & =\mathbf{I}+a_{\theta} \cdot \operatorname{ad}_{x}+c_{\theta} \cdot \operatorname{ad}_{x}^{2}+\left(\omega^{T} u\right) \cdot\left(\begin{array}{cc}
0 & Q(\omega) \\
0 & 0
\end{array}\right) \tag{65}\\
& =\left(\begin{array}{cc}
D_{\exp }(\omega) & \left(b_{\theta} \cdot u_{\times}+c_{\theta} \cdot\left(\omega_{\times} u_{\times}+u_{\times} \omega_{\times}\right)+\left(\omega^{T} u\right) \cdot Q(\omega)\right) \\
0 & D_{\exp }(\omega)
\end{array}\right) \tag{66}
\end{align*}
$$

Using the identity

$$
\begin{equation*}
\omega_{\times} u_{\times}+u_{\times} \omega_{\times}=\omega u^{T}+u \omega^{T}-2\left(\omega^{T} u\right) \mathbf{I} \tag{67}
\end{equation*}
$$

...we can rewrite $D_{\exp }(x)$:

$$
\begin{align*}
W(\omega) & \equiv-2 c_{\theta} \cdot \mathbf{I}+Q(\omega) \tag{68}\\
& =-2 c_{\theta} \cdot \mathbf{I}+\left(\frac{a_{\theta}-2 b_{\theta}}{\theta^{2}}\right) \cdot \omega_{\times}+\left(\frac{b_{\theta}-3 c_{\theta}}{\theta^{2}}\right) \cdot\left(\omega \omega^{T}-\theta^{2} \mathbf{I}\right) \tag{69}\\
& =\left(c_{\theta}-b_{\theta}\right) \cdot \mathbf{I}+\left(\frac{a_{\theta}-2 b_{\theta}}{\theta^{2}}\right) \cdot \omega_{\times}+\left(\frac{b_{\theta}-3 c_{\theta}}{\theta^{2}}\right) \cdot \omega \omega^{T} \tag{70}\\
D_{\exp }(x) & =\left(\begin{array}{cc}
D_{\exp }(\omega) & \left(b_{\theta} \cdot u_{\times}+c_{\theta} \cdot\left(\omega u^{T}+u \omega^{T}\right)+\left(\omega^{T} u\right) \cdot W(\omega)\right) \\
0 & D_{\exp }(\omega)
\end{array}\right) \tag{71}
\end{align*}
$$

5.2.2 Derivative of \log

A square block matrix M with the form -

$$
M=\left(\begin{array}{cc}
A & B \tag{72}\\
0 & A
\end{array}\right)
$$

...has an inverse:

$$
M^{-1}=\left(\begin{array}{cc}
A^{-1} & -A^{-1} \cdot B \cdot A^{-1} \tag{73}\\
0 & A^{-1}
\end{array}\right)
$$

Thus, when $\|\omega\|<2 \pi$, a closed form exists for $D_{\exp }^{-1}(x)$ using $D_{\exp }^{-1}(\omega)$ as given by Eq.55:

$$
\begin{align*}
B & \equiv b_{\theta} \cdot u_{\times}+c_{\theta} \cdot\left(\omega u^{T}+u \omega^{T}\right)+\left(\omega^{T} u\right) \cdot W(\omega) \tag{74}\\
D_{\exp }^{-1}(x) & =\left(\begin{array}{cc}
D_{\exp }^{-1}(\omega) & -D_{\exp }^{-1}(\omega) \cdot B \cdot D_{\exp }^{-1}(\omega) \\
0 & D_{\exp }^{-1}(\omega)
\end{array}\right) \tag{75}
\end{align*}
$$

5.3 SE(2)

5.3.1 Derivative of exp

Higher powers of ad collapse onto lower ones in $\mathfrak{s e}(2)$:

$$
\begin{align*}
\left(\begin{array}{l}
x \\
y \\
\theta
\end{array}\right) & \in \Re^{3} \tag{76}\\
m & =\left(\begin{array}{ccc}
0 & -\theta & x \\
\theta & 0 & y \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{s e}(2) \tag{77}
\end{align*}
$$

$$
\begin{align*}
\operatorname{ad}_{m} & =\left(\begin{array}{ccc}
0 & -\theta & y \\
\theta & 0 & -x \\
0 & 0 & 0
\end{array}\right) \tag{78}\\
\operatorname{ad}_{m}^{2} & =\left(\begin{array}{ccc}
-\theta^{2} & 0 & \theta x \\
0 & -\theta^{2} & \theta y \\
0 & 0 & 0
\end{array}\right) \tag{79}\\
\operatorname{ad}_{m}^{3} & =-\theta^{3} \mathrm{ad}_{m} \tag{80}
\end{align*}
$$

Collecting the terms:

$$
\begin{align*}
D_{\exp }(m) & =\mathbf{I}+\left(\sum_{i=0}^{\infty} \frac{(-1)^{i} \cdot \theta^{2 i}}{(2 i+2)!}\right) \mathrm{ad}_{m}+\left(\sum_{i=0}^{\infty} \frac{(-1)^{i} \cdot \theta^{2 i}}{(2 i+3)!}\right) \mathrm{ad}_{m}^{2} \tag{81}\\
& =\mathbf{I}+\left(\frac{1-\cos \theta}{\theta^{2}}\right) \cdot \operatorname{ad}_{m}+\left(\frac{1-\frac{\sin \theta}{\theta}}{\theta^{2}}\right) \cdot \operatorname{ad}_{m}^{2} \tag{82}\\
& =\left(\begin{array}{ccc}
a_{\theta} & -\theta b_{\theta} & \left(c_{\theta} x+b_{\theta} y\right) \\
\theta b_{\theta} & a_{\theta} & \left(c_{\theta} y-b_{\theta} x\right) \\
0 & 0 & 1
\end{array}\right) \tag{83}
\end{align*}
$$

5.3.2 Derivative of \log

Writing $D_{\exp }$ from Eq. 83 in block form gives:

$$
D_{\exp }=\left(\begin{array}{cc}
A & v \tag{84}\\
0 & 1
\end{array}\right)
$$

...with inverse:

$$
D_{\log }=\left(\begin{array}{cc}
A^{-1} & -A^{-1} \cdot v \tag{85}\\
0 & 1
\end{array}\right)
$$

5.4 $\operatorname{Sim}(2)$

5.4.1 Derivative of exp

In $\mathfrak{s i n}(2)$, higher powers of ad do not collapse onto lower ones:

$$
\begin{align*}
\left(\begin{array}{l}
x \\
y \\
\theta \\
\lambda
\end{array}\right) & \in \Re^{4} \tag{86}\\
m & =\left(\begin{array}{ccc}
0 & -\theta & x \\
\theta & 0 & y \\
0 & 0 & -\lambda
\end{array}\right) \in \operatorname{sim}(2) \tag{87}
\end{align*}
$$

$$
\begin{align*}
\operatorname{ad}_{m} & =\left(\begin{array}{cccc}
\lambda & -\theta & y & -x \\
\theta & \lambda & -x & -y \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \tag{88}\\
& =\left(\begin{array}{cc}
Q & P \\
0 & 0
\end{array}\right) \tag{89}\\
\operatorname{ad}_{m}^{n} & =\left(\begin{array}{cc}
Q^{n} & Q^{n-1} \cdot P \\
0 & 0
\end{array}\right) \tag{90}
\end{align*}
$$

To compute $D_{\exp }$ we can diagonalize Q by eigendecomposition $(i \equiv \sqrt{-1})$:

$$
\begin{align*}
Q & =V \cdot D \cdot V^{*} \tag{91}\\
V & \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) \tag{92}\\
E & \equiv\left(\begin{array}{cc}
\lambda-\theta i & \\
& \lambda+\theta i
\end{array}\right) \tag{93}
\end{align*}
$$

Now we can express $D_{\exp }$ in terms of E and its exponential:

$$
\left.\begin{array}{rl}
D_{\exp }(m) & =\sum_{j=0}^{\infty} \frac{\mathrm{ad}_{m}^{j}}{(j+1)!} \\
& =\sum_{j=0}^{\infty} \frac{1}{(j+1)!}\left(\begin{array}{cc}
Q^{j} & Q^{j-1} \cdot P \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{c}
{\left[\sum_{j=0}^{\infty} \frac{Q^{j}}{(j+1)!}\right]} \\
0
\end{array}\left[\begin{array}{c}
\left.\left(\sum_{j=0}^{\infty} \frac{Q^{j}}{(j+2)!}\right) \cdot P\right] \\
0
\end{array}\right)\right. \\
& \left.=\left(\begin{array}{c}
{\left[V \cdot\left(\sum_{j=0}^{\infty} \frac{E^{j}}{(j+1)!}\right) \cdot V^{*}\right]} \\
0
\end{array}\right] V \cdot\left(\sum_{j=0}^{\infty} \frac{E^{j}}{(j+2)!}\right) \cdot V^{*} \cdot P\right] \\
0 \tag{98}
\end{array}\right)
$$

When it exists, E^{-1} has a simple form:

$$
E^{-1}=\frac{1}{\lambda^{2}+\theta^{2}}\left(\begin{array}{ll}
\lambda+\theta i & \tag{99}\\
& \lambda-\theta i
\end{array}\right)
$$

Multiplying through yields only real elements:

$$
\begin{align*}
D_{\exp }(m) & =\left(\begin{array}{cc}
\left(\begin{array}{cc}
p & -q \\
q & p
\end{array}\right) & \left(\begin{array}{cc}
g & -h \\
h & g
\end{array}\right) \cdot p \\
& 0
\end{array}\right) \tag{100}\\
p & \equiv \frac{1}{\lambda^{2}+\theta^{2}}\left[e^{\lambda} \cdot(\lambda \cos \theta+\theta \sin \theta)-\lambda\right] \tag{101}
\end{align*}
$$

$$
\begin{align*}
q & \equiv \frac{1}{\lambda^{2}+\theta^{2}}\left[e^{\lambda} \cdot(\lambda \sin \theta-\theta \cos \theta)+\theta\right] \tag{102}\\
g & \equiv \frac{1}{\lambda^{2}+\theta^{2}}\left[\frac{1}{\lambda^{2}+\theta^{2}} \cdot(\lambda p+\theta q)-\lambda\right] \tag{103}\\
h & \equiv \frac{1}{\lambda^{2}+\theta^{2}}\left[\frac{1}{\lambda^{2}+\theta^{2}} \cdot(\lambda q-\theta p)+\theta\right] \tag{104}
\end{align*}
$$

When $\lambda^{2}+\theta^{2} \rightarrow 0$, the Taylor expansion should be used instead:

$$
\begin{align*}
p & \equiv 1+\frac{a}{2} \tag{105}\\
q & \equiv \frac{b}{2} \tag{106}\\
g & \equiv \frac{1}{2}+\frac{a}{6} \tag{107}\\
h & \equiv \frac{b}{6} \tag{108}
\end{align*}
$$

5.4.2 Derivative of \log

Writing $D_{\exp }$ from Eq. 100 in block form gives:

$$
D_{\exp }=\left(\begin{array}{cc}
A & B \tag{109}\\
0 & \mathbf{I}
\end{array}\right)
$$

...with inverse:

$$
D_{\log }=\left(\begin{array}{cc}
A^{-1} & -A^{-1} \cdot B \tag{110}\\
0 & \mathbf{I}
\end{array}\right)
$$

