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1 Introduction
This document computes
d _
o lewo| 08 (exp (x4 exp ()7) )

where exp and log are the exponential mapping and its inverse in a Lie group, and x and ¢ are
elements of the associated Lie algebra.

2 Definitions

Let G be a Lie group, with associated Lie algebra g. Then the exponential map takes algebra elements
to group elements:

exp:g — G )

1 1
exp (x) = I—i—x—&—ixz—!—ax?’—i—... 3)

The adjoint representation Adj of the group linearly transforms the exponential mapping of an alge-
bra element through left multiplication by a group element:

X € 9 (4)
Y € G )
Y-exp(x) = exp(Adj,-x)-Y (6)

The adjoint operator in the algebra is the linear operator representing the Lie bracket:

Ny € g @)
ady 'y = x-y—y-x (8)



The adjoint operator commutes with the exponential map:

Adjexp(y) = exp (ady) ©)

We define differentiation of a function f from algebra to group as follows:

f:g = G (10)
aj;ix):g - g (11)
PO o 2] (r e ) 12

In this document, we’re interested in Deyp, the derivative of exp:

Dexp:g — 9 (13)

Dep (x) = a@;if;(x) (14)

3 Derivation of a formula for D, (x)

This isn’t a rigorous derivation (the epsilon-delta proofs required for the two approximation steps
are omitted), but I find it intuitively pleasing. A more rigorous approach would use theorems about
integrated flows on continuous vector fields.

Define F to be exp of x modified by an algebra element e:

€ € g (15)
F(x,e) = exp(x+e) (16)

We can also take the product of multiple smaller group elements on the same geodesic:
N 1
Fle) =[ew (- (r+)) (7)
i=1

Letting the number of steps N go arbitrarily large, we can send ﬁ — 0. Then we have, to arbitrary
accuracy:

F(x,e) ~ lﬁexp (%) - exp (%) (18)

Each factor of exp (f7) can be shifted to the left side of the product by multiplying by the adjoint an
appropriate number of times:



AN = Adjexp(ﬁ) (19)
F(x,€) =~ | l.A el l.AZ. e l.AN. ﬁ (ﬁ) (20)
xX,€) = _exp N ANce|exp | oAy e ) exp | Ay e i:1exp N
[N 1 ) N
= _gexp (N AN e)] : Lljlexp (;\C])} (21)
"N . |
= [[]exp (N 'A}\z'e)] ~exp (x) (22)
Li=1

By choosing € sufficiently small, the product of exponentials is arbitrarily well approximated by the
exponential of a sum:

F(x,€) = exp < ZA €40 (||e||2)> exp (x) (23)

We can use the properties of the adjoint to rewrite Ay:

AN = Adjegp(x) (24)
= exp (ad%) (25)
= exp <;[ ~adx) (26)
for a Lie group
Taking the i" power:
Al = exp <Zif ~adx) (27)

Thus as N — oo, the sum becomes an integral:

1 ; 1 Y i
N AN = N . Zexp N . adx (28)

i=1

.MZ

I
—

— /01 exp (t-ady) - dt (29)

The integration can be performed on the power series of the matrix exponential.

1 [ oo 4i i
/ (Zt 'fd"> di (30)
o \izo *

© fitladi | 1
- <Z (i+1)!>‘0 ey
(] adl
- Z (i+1)! (32)

i= 0

N.MZ
>
[

I
—



Substituting into Eq.23:

F(x,e) = exp((i:)m’i)!) .e+O(||€||2)> ~exp (x)

Using the definition from Eq.14,

Dep (6) = |31 leco 108 (F () -exp (1)) @)
- [;eko} <z;)(iﬁ)!>'e+o(”e|2) (34)

*  adl
- g(iﬂ)! (35)

4 Derivative of log

When x = log (exp (x)), we can invert the function being differentiated in Eq.14:

b=f(e) = log (exp (x+e€)-exp (x)fl) (36)
log (exp () - exp (x)) — x (37)

m
I

The second term vanishes when differentiating by o:

Diog (5) = | 55l 108 (exp (9) - exp (3) @)

In this bijective region of the function, the derivative of the inverse is the inverse of the derivative:

de 957!
Diog (x) = Degp (%) (40)

5 Special Cases

The infinite series of Eq. 35 can be expressed in closed form in some Lie groups.



51 SO@)

5.1.1 Derivative of exp

The elements of the algebra so0(3) are 3 x 3 skew-symmetric matrices, and the adjoint representation

is identical:

w € R

wx_(

0 —ws3 wy
w3 0 —wy | €s50(3)

—wy Wy 0

ady, = wx«

adl, = —[wlP-ady

(41)
(42)

(43)
(44)

Because the higher powers of ad collapse back to lower powers, we can collect terms in the series:

Dexp (w)
i=0

1~ cos || 1 Splel
|wl| wl|

Note that

S0 Dexp (w) can be rewritten:

1~ cos o] 1=l
) I 2
Dexp (CU) = I+ <||w|2 ) cWx + 7Hw||2 . ((U(UT — ||(,U|| I)

1_ sin||w]|

N <1 —cos|w|> ot ol
2 2
wl| |l

We label the coefficients for convenience:

ag =

Cp —

Dexp (w0) =

2 (=) ] 2 (1) ]
H(Z 2i+2)! )'ad“’+<2 2i+3)!

i=0

sin 6
0
1—cos@
02
1-— ag
02

T
| T4 by - Wx 4| - ww

(45)

(46)

(47)

(48)

(49)

(50)
(51)

(52)
(53)



5.1.2 Derivative of log

Recall that in the bijective region of exp and log,

Diog (@) = Dy (@) (54)

For ||w|| < 27, a closed-form inverse exists for Dexp (w):

_ 1
Dep (@) = T— FWx T+ el WX (55)
be — 2C9
_ 56
eg T (56)
bg — %619
_ 57
1—cos6 ©7)

Depending on the value of 6, the more convenient of Eq. 56 or Eq.57 should be used to compute eg.

5.2 SE(3)
5.2.1 Derivative of exp

Again, the higher powers of ad can be expressed in terms of lower powers:

ww € N (58)
0 = |l (59)
x = (“6* g>65e(3) (60)

ad, = <“6X i‘}i) (61)

2

d2 _ <w>< (qux+uxwx)> 62

ady 0 wi ( )

ad® = —92-adx—2(wTu)<8 “Z;) (63)

Collecting the terms, we have:

Qw) = (ae ezzbg) - (bg 923c9> cw? b
Dexp () = I+ag-ady+cq-ad? + (wTu> _ ( 8 Q E)w) ) .
= < DeXP ((‘J) (be-ux +c9.(wxux +”xwx)+(wTu)~Q(w)) > (66)
0 Dexp ()
Using the identity



Wxlx +UxWx = wul +uw’ =2 (wTu) I

...we can rewrite Dexp (x):

W(w) = —2¢-14+Q(w)

ag —2b by — 3¢
= —ZC9-I+< 662 9)~wx+< 992 9)~<wa—921)
ag —2b by — 3¢
= (ce—b9)~l+(962 9>'CU><+(902 9>-wa

w x4+ cp- (wul +uwT wlu) - W (w
Dexp (x) = (Dex%( ) (be +co- ( D‘;p(wg""( ) W( )))

5.2.2 Derivative of log

A square block matrix M with the form -

PN
N————

...has an inverse:

Al —A1.B. A1
_1_
wt = () )

Thus, when ||w|| < 277, a closed form exists for Dy, (x) using Dy, (w) as given by Bq.55:
B = byp-ux+cy- (qu+uwT)+(wTu) W (w)
Dol (x) = [ Pee(@) ~Dep(@) B Do (w)
exp 0 Dyl (@)

5.3 SE(2)
5.3.1 Derivative of exp

Higher powers of ad collapse onto lower ones in se (2):

0 -6 x
m = 8 0 y | ese(2)
0 0 0

(67)

(68)
(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)



0 -0 vy
ad,, = 0 0 —x
0 0 0

—0> 0 Ox
ad?, = 0 —6% oy
0 0 0

m

Collecting the terms:

o (_ 1\l . p2i 0 [ . p2i

1—cos6 1—sigé
- < 62 )'ad'”( 2
ag —9b9 (ng + bgy)
= | 0 ap (coy —bpx)
0 0 1
5.3.2 Derivative of log
Writing Dexp from Eq. 83 in block form gives:
A o
Dexp = ( 0 1 )
...with inverse:
ATt —AT
Dlog ( 0 1 )
54 Sim(2)
5.4.1 Derivative of exp
In sim (2), higher powers of ad do not collapse onto lower ones:
x
Yy 4
0 € R
A
0 -0 «x
m = 6 0 y € sim (2)
0 0 -A

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)



A -0 y —x
. e A —x -y
ady, = 00 o0 o0 (88)
0 0 0 O
_ Q P
= ( 0 0 ) (89)
no_ Qn anl - P
ad,, = ( 0 0 (90)
To compute Dexp we can diagonalize Q by eigendecomposition (i = v/ —1):
Q = V-D-V* o1
_ 1 1 1
5
_ A—0i
fe ()
Now we can express Deyp in terms of E and its exponential:
Do (1) = Y. ad (94)
exp ]:O (] —+ 1)'
> 1 Q Qi-l.p )
= 95
LG (5% ©5)
) Qj o Qj .
- ( 50 o] (520 o) ] ) (96)
0 0
Ay _EL) Ly Ay EL) Ly
([ ogh) ] [ (orf) v o)) -
.E-1. —-I)-v* .E-2. —I1—F)-V*.
_ ( [V-E (ex%(E) I)-V*] [V-E (exp(Ez) I-E)-V*-P] ) (98)
When it exists, E~! has a simple form:
-1 1 A+ 0i
B = wye A~ 6 )

Multiplying through yields only real elements:

<P —v7> <g _h>.p
Dexp (m) = q p h g (100)
0 I
p = ﬁ{eA~(ACOSG+GSinG)—A} (101)



_ 1 A :
1= e {e - (Asinf — 0 cosf) +9} (102)
o 1
g = Y L\z e -(Ap+09q) —A} (103)
1 1
e N {/\2+62 -(Aq—@p)—b—@] (104)

When A2 + 62 — 0, the Taylor expansion should be used instead:

p = 1+§ (105)
b
= = 1
7= 5 (106)
1 a
§ = 5+¢ (107)
b
h = - 1
2 (108)
5.4.2 Derivative of log
Writing Dexp from Eq. 100 in block form gives:
A B
Dexp = ( 0 I ) (109)
...with inverse:
A"l —A71.B
Diog = ( 0 I ) (110)

10



