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1 Introduction

This document describes properties of transformation groups useful for computer vision, mainly
intended as a reference for implementation. Lengthy derivations are omitted.

2 General Properties

2.1 Matrix Groups

A Lie group G is simultaneously a smooth differentiable manifold and a group. The Lie groups
treated in this document are all real matrix groups: group elements are represented as matrices in
Rn×n. The groups’ multiplication and inversion operations are identically matrix multiplication and
inversion. Because each group is represented by a specific subclass of non-singular n× n matrices,
there are fewer than n2 degrees of freedom.

2.2 Lie Algebra

Consider a Lie group G represented in Rn×n, with k degrees of freedom. The Lie algebra g is the
space of differential transformations – the tangent space – around the identity of G. This tangent space
is a k-dimensional vector space with basis elements {G1, . . . , Gk}: the generators. Elements of g are
represented as matrices in Rn×n, but under addition and scalar multiplication, rather than matrix
multiplication.

For such a Lie algebra g, we write the linear combination of generators {Gi} specified by a vector
of coefficients c as alg (c):

alg : Rk → g ⊂ Rn×n (1)

alg (c) ≡
k

∑
i=1

ciGi (2)

We denote the unique inverse of this linear combination by alg−1. It might seem confusing that a
tangent vector is in fact an n× n matrix, but it can always be thought of (and represented) as the vector
of coefficients of the generators.

2.3 Exponential Map and Logarithm

The exponential map takes elements in the algebra to elements in the group. Intuitively speaking,
it walks along the group manifold in the differential direction specified by the tangent vector in the
algebra. For matrix groups the exponential map is simply matrix exponentiation:
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exp : g → G (3)

exp (x) = I + x +
1
2!

x2 +
1
3!

x3 + · · ·+ 1
i!

xi + · · · (4)

For several groups described below, the exponential map has a closed form. It is always a contin-
uous map.

The inverse of the exponential map is the logarithm:

exp (log (X)) = X (5)

The logarithm is usually not continuous everywhere, but is always continuous near the identity.
Note that for most groups, including all groups with compact subgroups such as rotations, neither
exp nor log is injective.

2.4 Interpolation on the Manifold

The exponential map and logarithm provides an intuitive method for interpolation or blending of
transformations. Consider transformation X, Y ∈ G and an interpolation coefficient t ∈ [0, 1] ⊂ R.
The function f blends the two transformations by moving steadily along the geodesic between them:

f : G×G×R → G (6)

f (X, Y, t) = exp
(

t · log
(

Y · X−1
))
· X (7)

=⇒ f (X, Y, 0) = X (8)
=⇒ f (X, Y, 1) = Y (9)

=⇒ f
(

X, Y,
1
2

)
· X−1 = Y · f

(
X, Y,

1
2

)−1
(10)

2.5 Adjoint Representation

Consider tangent vectors a, b ∈ g and a group element X ∈ G. How can we choose b such that the
following relation holds?

exp (b) · X = X · exp (a) (11)

Right multiplying both sides by X−1 yields a conjugation by X:

exp (b) = X · exp (a) · X−1 (12)

We could then compute b by taking the logarithm:

b = log
(

X · exp (a) · X−1
)

(13)

In fact, the identical result can be obtained by using the adjoint representation. A group G ⊂ Rn×n

with k degrees of freedom has an isomorphic representation as the group of linear transformations
on g, called the adjoint:
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X ∈ G (14)
a ∈ g (15)

AdjX : g → g (16)

AdjX (a) = X · a · X−1 ∈ g (17)

Elements of the adjoint representation are usually written as k× k matrices acting on the coefficient
vectors of elements in g by multiplication.

The adjoint representation preserves the group structure of G:

X, Y ∈ G (18)
AdjX·Y = AdjX ·AdjY (19)

AdjX−1 = Adj−1
X (20)

Returning to our motivating problem, we define b using the adjoint:

b ≡ AdjX (a) (21)

=⇒ exp (b) = X · exp (a) · X−1 (22)
=⇒ exp (b) · X = X · exp (a) (23)

Thus the adjoint is effectively the Jacobian of the transformation of tangent vectors through ele-
ments of the group:

c ∈ Rk (24)
X ∈ G (25)

f : G×Rk → Rk (26)

f (X, c) = alg−1
(

log
(

X · exp (alg (c)) · X−1
))

(27)

∂ f
∂c
∣∣
c=0 = AdjX (28)

2.6 Group Action on Rn

Given the matrix representation of G in Rn×n, there is a natural action on the vector space Rn (equiv-
alently the projective space Pn−1) by multiplication:

X ∈ G (29)
X : Rn → Rn (30)

X (v) = X · v (31)

For the groups described below, this group action by matrix multiplication yields a transformation
on points or lines in 2D or 3D Euclidean or projective space. For example, the group action of an
element of SE(2) on P2 (the 2D plane as homogeneous coordinates in R3) is a rotation and translation
of the plane coordinates.

The Jacobian of this action by the group differentials around the identity is trivially computed
using the k generators of the algebra:
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p ∈ Rn (32)

c ∈ Rk (33)
f (c, p) ≡ exp (alg (c)) · p (34)

∂ f
∂c

∣∣
c=0 =

(
G1 · p G2 · p · · · Gk · p

)
∈ Rn×k (35)

3 SO(2)

3.1 Description

SO(2) is the group of rotations in the 2D plane. It has one degree of freedom: angle of rotation. The
group is commutative. The inverse is given by the transpose:

X ∈ SO(2) ⊂ R2×2 (36)

X−1 = XT (37)

3.2 Lie Algebra

The Lie algebra so(2) is generated by one antisymmetric element, corresponding to differential rota-
tion:

G1 =

(
0 −1
1 0

)
(38)

3.3 Exponential Map

The exponential map from so(2) to SO(2) is simply a 2D rotation:

exp (alg (θ)) = exp
(

0 −θ
θ 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
(39)

The logarithm is trivially computed from an element of SO(2).

3.4 Adjoint Representation

The adjoint representation of SO(2) is trivial:

X =

(
a −b
b a

)
∈ SO(2), a2 + b2 = 1 (40)

AdjX (alg (θ)) = X·alg (θ) · X−1 (41)

=

(
0 −θ
θ 0

)
(42)

= alg (θ) (43)
=⇒ AdjX = I (44)
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4 SE(2)

4.1 Description

SE(2) is the group of rigid transformations in the 2D plane, the semi-direct product SO(2)n R2. It
has three degrees of freedom: two for translation and one for rotation. Subgroups include SO(2).

R ∈ SO(2) (45)
t ∈ R2 (46)

X =

(
R t
0 1

)
∈ SE(2) ⊂ R3×3 (47)

X−1 =

(
RT −RTt
0 1

)
(48)

4.2 Lie Algebra

The Lie algebra se(2) has three generators:

G1 =


0 0 1
0 0 0
0 0 0

, G2 =


0 0 0
0 0 1
0 0 0

, G3 =


0 −1 0
1 0 0
0 0 0

 (49)

4.3 Exponential Map

The exponential map from se(2) to SE(2) has a closed form:

v =

 x
y
θ

 ∈ R3 (50)

R ≡
(

cos θ − sin θ
sin θ cos θ

)
(51)

V =

( sin θ
θ − 1−cos θ

θ
1−cos θ

θ
sin θ

θ

)
(52)

exp (alg (v)) = exp

 0 −θ x
θ 0 y
0 0 0

 =

 R V ·
(

x
y

)
0 1

 (53)

The elements of V should be calculated with Taylor series when θ is small (see Section 11).

4.4 Adjoint Representation

X =

(
R t
0 1

)
∈ SE(2) (54)

AdjX =

 R
(

t1
−t0

)
0 1

 (55)
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5 Sim(2)

5.1 Description

Sim(2) is the group of orientation-preserving similarity transformations in the 2D plane, the semi-
direct product SE(2)o R∗. It has four degrees of freedom: two for translation, one for rotation, and
one for scale. Subgroups include SE(2) and R∗.

X =

(
R t
0 s−1

)
∈ Sim(2) ⊂ R3×3 (56)

X−1 =

(
RT −sRTt
0 s

)
(57)

5.2 Lie Algebra

The Lie algebra sim(2) has four generators:

G1 =

 0 0 1
0 0 0
0 0 0

 , G2 =

 0 0 0
0 0 1
0 0 0

 , G3 =

 0 −1 0
1 0 0
0 0 0

 , G4 =

 0 0 0
0 0 0
0 0 −1

 (58)

5.3 Exponential Map

The exponential map from sim(2) to Sim(2) has a closed form:

v =


x
y
θ
λ

 ∈ R4 (59)

R ≡
(

cos θ − sin θ
sin θ cos θ

)
(60)

A ≡ sin θ

θ
(61)

B ≡ 1− cos θ

θ2 (62)

C ≡ θ − sin θ

θ3 (63)

α ≡ λ2

λ2 + θ2 (64)

s ≡ eλ

X ≡ α

(
1− s−1

λ

)
+ (1− α) (A− λB) (65)

Y ≡ α

(
s−1 − 1 + λ

λ2

)
+ (1− α) (B− λC) (66)

V =

(
X −θY
θY X

)
(67)

exp (alg (v)) = exp

 0 −θ x
θ 0 y
0 0 −λ

 =

 R V ·
(

x
y

)
0 s−1

 (68)
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The elements of V should be calculated with Taylor series when θ or λ is small (see Section 11).

5.4 Adjoint Representation

X =

(
R t
0 s−1

)
∈ Sim(2) (69)

AdjX =

 sR s ·
(

t1 −t0
−t0 −t1

)
0 0
0 0

1 0
0 1

 (70)

6 Aff(2)

6.1 Description

Aff(2) is the group of affine transformations on the 2D plane. It has six degrees of freedom: two
for translation, one for rotation, one for scale, one for stretch and one for shear. Subgroups include
Sim(2).

X =

(
A t
0 1

)
∈ Aff(2) ⊂ R3×3 (71)

X−1 =

(
A−1 −A−1t

0 1

)
(72)

6.2 Lie Algebra

The Lie algebra aff(2) has six generators:

G1 =


0 0 1
0 0 0
0 0 0

, G2 =


0 0 0
0 0 1
0 0 0

, G3 =


0 −1 0
1 0 0
0 0 0

, (73)

G4 =


1 0 0
0 1 0
0 0 0

, G5 =


1 0 0
0 −1 0
0 0 0

 G6 =


0 1 0
1 0 0
0 0 0

 (74)

6.3 Exponential Map

The exponential map from aff(2) to Aff(2) has no closed form. It can be computed by any general
matrix exponential routine. The same is true for the logarithm.

6.4 Adjoint Representation

Let
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X =

(
A t
0 1

)
=

 a b x
c d y
0 0 1

 ∈ Aff(2) (75)

E ≡



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1√

2
1√
2

0

0 0 − 1√
2

0 0 1√
2

0 0 1√
2

0 0 1√
2

0 0 0 1√
2
− 1√

2
0


∈ R6×6 (76)

f ≡ 1
ad− bc

(77)

C ≡
(

a ·A−T b ·A−T

c ·A−T d ·A−T

)
∈ R4×4 (78)

= f


ad −ac bd −bc
−ab a2 −b2 ab
cd −c2 d2 −cd
−bc ac −bd ad

 (79)

T ≡
(

x y 0 0
0 0 x y

)
∈ R2×4 (80)

Then

AdjX = ET
(

A −T · C
0 C

)
E (81)

Writing out the product explicitly:

AdjX =



a b f y
(
a2 + b2)− f x (ac + bd) −x f y (2ab)− f x (ad + bc) f x (ac− bd)− f y

(
a2 − b2)

c d f y (ac + bd)− f x
(
c2 + d2) −y f y (ad + bc)− f x (2cd) f x

(
c2 − d2)− f y (ac− bd)

0 0 f
2
(
a2 + b2 + c2 + d2) 0 f (ab + cd) f

2
(
−a2 + b2 − c2 + d2)

0 0 0 1 0 0
0 0 f (ac + bd) 0 f (ad + bc) f (bd− ac)
0 0 f

2
(
−a2 − b2 + c2 + d2) 0 f (cd− ab) f

2
(
a2 − b2 − c2 + d2)


(82)

7 SL(3)

7.1 Description

SL(3) is the group of unit-determinant linear transformations, representing among other things ho-
mographies on the 2D projective plane. It has eight degrees of freedom: two for translation, one for
rotation, one for scale, one for stretch, one for shear, and two for perspective change. Subgroups
include Aff(2) and SO(3).

H ∈ SL(3) ⊂ R3×3 (83)
det (H) = 1 (84)
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7.2 Lie Algebra

The Lie algebra sl(3) has eight generators, all with zero trace:

G1 =


0 0 1
0 0 0
0 0 0

, G2 =


0 0 0
0 0 1
0 0 0

, G3 =


0 −1 0
1 0 0
0 0 0

, (85)

G4 =


1 0 0
0 1 0
0 0 −2

, G5 =


1 0 0
0 −1 0
0 0 0

 G6 =


0 1 0
1 0 0
0 0 0

, (86)

G7 =


0 0 0
0 0 0
1 0 0

, G8 =


0 0 0
0 0 0
0 1 0

 (87)

7.3 Exponential Map

The exponential map from sl(3) to SL(3) has no closed form. It can be computed by any general
matrix exponential routine. The same is true for the logarithm. Note that the exponential of any
traceless square matrix is a matrix with unit determinant.

7.4 Adjoint Representation

First we treat elements of sl(3), which are 3× 3 matrices, as 9-vectors, writing the entries in row-major
order. Then, for h ∈ sl(3) and H ∈ SL(3), the conjugation H · h ·H−1 can be expressed as a linear
mapping CH on the elements of h. Pre- and post- applying matrix representations of alg and alg−1

respectively then gives the adjoint representation.
Let

[alg] ≡



0 0 0 1 1 0 0 0
0 0 −1 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 −1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 −2 0 0 0 0


∈ R9×8 (88)

[
alg−1

]
≡



0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 − 1

2 0 1
2 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0
1
2 0 0 0 − 1

2 0 0 0 0
0 1

2 0 1
2 0 0 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


∈ R8×9 (89)

CH ≡

 H11H−T H12H−T H13H−T

H21H−T H22H−T H23H−T

H31H−T H32H−T H33H−T

 (90)

Then
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AdjH =
[
alg−1

]
· CH · [alg] (91)

8 SO(3)

8.1 Description

SO(3) is the group of rotations in 3D space, represented by 3x3 orthogonal matrices with unit deter-
minant. It has three degrees of freedom: one for each differential rotation axis. The inverse is given
by the transpose:

R ∈ SO(3) ⊂ R3×3 (92)

R−1 = RT (93)
det (R) = 1 (94)

8.2 Lie Algebra

The Lie algebra so(3) is the set of antisymmetric 3× 3 matrices, generated by the differential rotations
about each axis:

G1 =


0 0 0
0 0 −1
0 1 0

, G2 =


0 0 1
0 0 0
−1 0 0

, G3 =


0 −1 0
1 0 0
0 0 0

 (95)

The mapping alg : R3 → so(3) sends 3-vectors to their skew matrix:

ω ≡

 a
b
c

 ∈ R3 (96)

alg (ω) = ω× (97)

=

 0 −c b
c 0 −a
−b a 0

 (98)

8.3 Exponential Map

The exponential map from so(3) to SO(3) has a closed form (also called the Rodrigues formula). The
tangent vector ω can be interpreted as an axis-angle representation of rotation: its exponential is the
rotation around the axis ω/ ‖ω‖ by ‖ω‖ radians:

ω ∈ R3 (99)

θ ≡
√

ωTω (100)
exp (algω) = exp (ω×) (101)

= I + ω× +
1
2!

ω2
× +

1
3!

ω3
× + ... (102)

= I +
(

sin θ

θ

)
ω× +

(
1− cos θ

θ2

)
ω2
× (103)
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The higher-order terms in Eq. 102 collapse because ω3
× = −θ2ω×. The coefficients of R should be

calculated with Taylor series when θ is small (see Section 11).
Given a rotation matrix R ∈ SO(3), the logarithm can be computed by first determining cos θ =

1
2 (tr (R)− 1), and then computing ω from symmetric differences (see the second term of Eq. 103).

8.4 Adjoint Representation

The adjoint representation of SO(3) is actually identical to the rotation matrix representation due to
properties of the cross product:

R ∈ SO(3) (104)
a, b ∈ R3 (105)(

R · a× · RT
)
· b = R ·

(
a× RT · b

)
(106)

= (R · a)× b (107)
= (R · a)× · b (108)

=⇒ R · a× · RT = (R · a)× (109)
=⇒ AdjR = R (110)

9 SE(3)

9.1 Description

SE(3) is the group of rigid transformations in 3D space, the semi-direct product SO(3)nR3. It has six
degrees of freedom: three for translation and three for rotation. Subgroups include SE(2) and SO(3).

R ∈ SO(3) (111)
t ∈ R3 (112)

X =

(
R t
0 1

)
∈ SE(3) ⊂ R4×4 (113)

X−1 =

(
RT −RTt
0 1

)
(114)

9.2 Lie Algebra

The Lie algebra se(3) has six generators:

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (115)

G4 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

, G5 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

, G6 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 (116)

Thus the mapping alg : R3 → se(3) :
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u, ω ∈ R3 (117)

alg
(

u
ω

)
=

(
ω× u
0 0

)
(118)

9.3 Exponential Map

The exponential map from se(3) to SE(3) has a closed form:

u, ω ∈ R3 (119)

θ ≡
√

ωTω (120)

exp
(

alg
(

u
ω

))
= exp

(
ω× u
0 0

)
(121)

= I +
(

ω× u
0 0

)
+

1
2!

(
ω2
× ω×u

0 0

)
+

1
3!

(
ω2
× ω2

×u
0 0

)
+ ... (122)

=

(
exp (ω×) V · u

0 1

)
(123)

V ≡ I +
(

1− cos θ

θ2

)
ω× +

(
θ − sin θ

θ3

)
ω2
× (124)

Note that the rotation block is computed according to Eq. 103. The coefficients of V should be
calculated with Taylor series when θ is small (see Section 11).

The inverse of V can also be written in closed form:

V−1 = I− 1
2

ω× +
1
θ2

(
1− θ sin θ

2 (1− cos θ)

)
ω2
× (125)

The logarithm of
(

R t
0 1

)
∈ SE(3) can be determined by first computing ω = alg−1 (log (R)),

then computing u = V−1 · t.

9.4 Adjoint Representation

X =

(
R t
0 1

)
∈ SE(3) (126)

AdjX =

(
R t×R
0 R

)
∈ R6×6 (127)

10 Sim(3)

10.1 Description

Sim(3) is the group of similarity transformations in 3D space, the semi-direct product SE(3)o R∗. It
has seven degrees of freedom: three for translation, three for rotation, and one for scale. Subgroups
include Sim(2) and SE(3).
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R ∈ SO(3) (128)
t ∈ R3 (129)
s ∈ R+ (130)

X =

(
R t
0 s−1

)
∈ Sim(3) ⊂ R4×4 (131)

X−1 =

(
RT −sRTt
0 s

)
(132)

10.2 Lie Algebra

The Lie algebra sim(3) has seven generators:

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (133)

G4 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

, G5 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

, G6 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

, (134)

G7 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 (135)

10.3 Exponential Map

The exponential map from sim(3) to Sim(3) has a closed form:

13



v =

 u
ω
λ

 ∈ R7 (136)

θ ≡
√

ωTω (137)

A ≡ sin θ

θ
(138)

B ≡ 1− cos θ

θ2 (139)

C ≡ 1− A
θ2 (140)

D ≡
1
2 − B

θ2 (141)

s−1 ≡ e−λ (142)

α ≡ λ2

λ2 + θ2 (143)

β ≡ s−1 − 1 + λ

λ2 (144)

γ ≡
1
2 − β

λ
(145)

X ≡ 1− s−1

λ
(146)

Y ≡ α · β + (1− α) · (B− λC) (147)
Z ≡ α · γ + (1− α) · (C− λD) (148)

R ≡ I + Aω× + Bω2
× (149)

V ≡ XI + Yω× + Zω2
× (150)

exp (alg (v)) = exp
(

ω× u
0 −λ

)
=

(
R V · u
0 s−1

)
(151)

The coefficients of R and V should be calculated with Taylor series when θ or λ is small (see
Section 11).

10.4 Adjoint Representation

X =

(
R t
0 s−1

)
∈ Sim(3) (152)

AdjX =

 sR st×R −st
0 R 0
0 0 1

 ∈ R7×7 (153)

11 Taylor Series

These are Taylor series for coefficients in the above equations, for when the parameters are near zero:
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sin θ

θ
= 1− θ2

6
+

θ4

120
− θ6

5040
+ O

(
θ8
)

(154)

≈ 1− θ2

6

(
1− θ2

20

(
1− θ2

42

))
(155)

1− cos θ

θ2 =
1
2
− θ2

24
+

θ4

720
− θ6

40320
+ O

(
θ8
)

(156)

≈ 1
2

(
1− θ2

12

(
1− θ2

30

(
1− θ2

56

)))
(157)

θ − sin θ

θ3 =
1
6
− θ2

120
+

θ4

5040
− θ6

362880
+ O

(
θ8
)

(158)

≈ 1
6

(
1− θ2

20

(
1− θ2

42

(
1− θ2

72

)))
(159)

1
2 −

1−cos θ
θ2

θ2 =
1

24
− θ2

720
+

θ4

40320
− θ6

3628800
+ O

(
θ8
)

(160)

≈ 1
24

(
1− θ2

30

(
1− θ2

56

(
1− θ2

90

)))
(161)

1
θ2

(
1− θ sin θ

2 (1− cos θ)

)
=

1
12

+
θ2

720
+

θ4

30240
+

θ6

1209600
+ O

(
θ8
)

(162)

≈ 1
12

(
1 +

θ2

60

(
1 +

θ2

42

(
1 +

θ2

40

)))
(163)

1− e−λ

λ
= 1− λ

2
+

λ2

6
− λ3

24
+ O

(
λ4
)

(164)

≈ 1− λ

2

(
1− λ

3

(
1− λ

4

))
(165)

e−λ − 1 + λ

λ2 =
1
2
− λ

6
+

λ2

24
− λ3

120
+ O

(
λ4
)

(166)

≈ 1
2

(
1− λ

3

(
1− λ

4

(
1− λ

5

)))
(167)

1
2 −

e−λ−1+λ
λ2

λ
=

1
6
− λ

24
+

λ2

120
− λ3

720
+ O

(
λ4
)

(168)

≈ 1
6

(
1− λ

4

(
1− λ

5

(
1− λ

6

)))
(169)
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