Hermite Splines in Lie Groups as Products of Geodesics

Ethan Eade

Updated May 28, 2017*

1 Introduction

1.1 Goal

This document defines a curve in the Lie group G parametrized by time and by structural parameters in the
associated Lie algebra g, and shows how to compute its differentials by all parameters.

The curve is expressed primarily in the form

Sy : Rxg'—G (1)
Su(t) = exp(an-pn)-exp(ay-1-pPn-1)--..-exp(ar-p1))

Having established notation and some useful identities, we show how to compute differentials of the product of
exponentials, and then describe how to achieve boundary conditions on the curve’s values and derivatives by
choosing a; and p; appropriately.

The result is a form suitable for expressing an individual segment of a Hermite spline in the group, complete with
all the structural differentials useful for fitting the spline to data. Chaining such segments with shared boundary
conditions on neighbors yields a C? trajectory in the group, permitting parametric regression against observations
involving the value, first, and second time derivatives of the trajectory.

The formulation is valid for any Lie group, but as a motivating example, consider using such a spline to model a
rigid body trajectory in SE (3), and adjusting the spline parameters to maximize the likelihood of noisy observa-
tions from a gyroscope and accelerometer on the body.

1.2 Notation

Elements of the Lie group G are denoted with upper-case letters, while elements of the associated Lie algebra g are
denoted with lower-case letters.

The identity matrix is written I.

The adjoint representation in the group is written Ad [], while the adjoint representation in the algebra is written

ad [].

The exponential map is written exp. It maps elements of g to G, and elements of ad [g] to Ad [G]. Its inverse is the
logarithm log.

*Corrected left-hand-sides of equations 43-45 from S’ to S”.

2 Identities

This section enumerates identities useful in the rest of the document, and can be skipped if the reader is familiar
with representations of Lie groups and their properties.

Throughout this section, let x,y € gand X,Y € G.

2.1 Basic properties of Ad[],ad [}, and exp ()

The adjoint operator in g is anti-commutative:

ad[x] -y = —ad[y] - x 3)

The exponential map and the adjoint representation commute:

exp(ad[x]) = Ad[exp (x)] 4)

The adjoint transforms right tangent vectors to left tangent vectors:

X-exp(y) =exp(Ad[X] y) X (5)

The adjoint is a group homomorphism:

Ad[X-Y] = Ad[X]-Ad[Y] 6)

22 Ad[X]-ad[y] =ad[Ad [X] y] - Ad [X]

Using the above, we can show that the adjoint in the group can transform the adjoint in the algebra from right to
left as well. Consider t € R.

X-exp(t-y) = exp(Ad[X]-t-y)-X)
First send all factors to the adjoint representation:

Ad[X] - Ad[exp ()] = Ad [exp (Ad [X] - £)] - Ad [X] ®)

Next re-order the application of the exponential map and the adjoint operator:

Ad[X] - exp (ad [t -y]) = exp (ad [Ad [X] -]) - Ad [X] ©)

Then use the linearity of the adjoint operator in the algebra:

Ad [X]-exp (t-ad[y]) =exp (t-ad[Ad[X] y]) - Ad[X] (10)

Finally, differentiate by t at ¢ = 0:

Ad[X]-ad[y] = ad [Ad [X] - y] - Ad [X] (11)

2.3 Differentials in G and the adjoint

We define differentials in the group in terms of left updates, so that the differential is a linear mapping from the

parameter(s) of interest a to the algebra g:

ox(a) 2 (log (X (x+0)-X(@)))
o 06 |‘5:0

Differentials by left updates are then simple. Consider a linear operator on the algebra,L:

8(exp(L~e)-X)| _
de e=0

L

This makes differentials of products straightforward:

2(X-Y)
oy Ad [X]
9(X-Y) I

0X B

We can also differentiate transformations of algebra vectors by the adjoint:

d (Ad [exp (9) - X] -) | J (Ad [exp (9)] - Ad [X] - y)
el =0 90

d (exp (ad [4]) - Ad [X] - y)

90

d(ad[d] - Ad[X] - y)

el
dad [Ad [X]-y]-¢
- R
— —ad[Ad[X] -y

3 S (t) and its Time Derivatives

3.1 Function of time

We define the product recursively:

aj; : R —-R

pi € 8

S+ Rxg—G
Sl‘(f

) = exp(a;(t)-pi)-Sia(t)
) = exp(a(t)-p1)

Sy (t) is then evaluated by left-multiplying each exponential term from i = 1 to n.

(12)

(13)

(14)

(15)

(16)
17)
(18)

(19)
(20)

(1)
(22)
(23)
(24)
(25)

3.2 First derivative by time

Consider the exponential factor A; () = exp (a; (f) - p;):

Ait+e) = exp((a(t)+e-af()+0(&)) p) (26)
= exp((e-aj () +0(&)) i) -exp (a: () - pi) 27)

= e ((e-aim+0(e?)) pi)-Ai(h) (28)

AL(t) %4, g:e le=o0 (29)

= a;(t) pi (30)

The first time derivative S}, (t) of S, (t) is then straightforward to express recursively using the product and chain
rules:

Si(t) = Ai(t)-Si—1(t) (31)
Si(t) = Af(t)-Sic1(t)+Ad[A; (H)]-Si 4 () (32)
= a;(t) - pi+Ad[A; (t)]- S (1) (33)

3.3 Second derivative by time

The second derivative is the partial derivative by t of Eq.33:

st - 20 &N
= A (1) pi+ Ad[A; ()] Sy (1) — ad [Ad [, ()] -1 ()] - AL (1) @)
= A (1) pi+ Ad[A; ()] Sy 1)+ ad [4] (1] - Ad [, (1] -S'i1 (1) o

4 Structural Differentials for Regression

In order to perform regression of the model against observations, we’ll need differentials of S, S, and S” by the
parameters {p;}.

To this end, we’ll require the differential of the exponential map, described in detail in another document ('Differ-
ential of the Exponential Map’):

EBexp(x) _ dlog (exp (x +) -exp (—x))

Dexp [X} ox - 90 (37)
For many Lie groups of interest, Dexp [x] can be computed in closed form.
For convenience, we label the differential of the exponential factor A; of S; by its argument:
D; = Dexp [a; (t) - pi] (38)

The time parameter ¢ is omitted in most of the equations below to avoid clutter.

4.1 Structural differentials of S ()

Eq.24 is differentiated using the chain rule and Eq.14:

35, IA,;
P 39
Ipi Ip; (39)
= Dexp [ai ’ Pl] "4 (40)
= Dj-a (41)
3s; .
s, [Ad[a]- (ap,.l) j<i)
op; 0 j>i

4.2 Structural differentials of S’ ()

Eq.33 is differentiated using the product rule and Eq.20:

3S! (aA;)) (aAi>
=t = —ad [Ad[A;]- S|4 - [==
api api [[l] i 1} api

— d;-I1-ad[Ad[A]-S 4] (M)

Ip;
as, {Ad[AJ-(ag;;;l) i<i

Ip; 0 j>i

4.3 Structural differentials of S” ()

Eq.36 is differentiated using the product rule and Eq.20:

851/‘/ _ " 1" aAi ! / aAi ! /

S = al1-ad[Ad[4] i1]~<api>—ad (A7) -ad [Ad (4] il}.<api)_ai.ad [Ad[A] - 5_{43)
— &1 (ad [Ad[A]-SY,] +ad [A] - ad [Ad[Ai].sgl]).(g‘gf‘)_a;.ad Ad[A]-SL,] @)

as! Ad[A] - (B5) fad[A]-Ad(A]- (Z=2) j<i

. i i ap; i ! Ip; J (45)

Pi 0 j>i

4.4 Efficient computation of structural differentials

Directly applying the recursive definitions above requires O (n?) time to compute structural differentials dS,,, 35S,
and 9S]/.

By reordering the recursion from left to right and accumulating products and sums, these differentials can all be
computed in O (1) time:

L, = I (46)
I, = 0 (47)

2S, (asl)
= Ad[L] | = 48

api = opi (48)
oS, 0S;
op; A4l (ap) @)
oS! (85”) (as’ >

noo_— Ad L]- 1 + ad li . n 50
ap; [Li] o, [1i] o (50)
Loy = Li-A; (51)
.y = L+Ad [Li} . A; (52)

Note that Eq. 50 makes use of the identity given in Eq.11.

5 Constructing a Spline Segment with Boundary Conditions

By choosing a; and p; appropriately, we can construct a C* curve segment B (f) with specified boundary values
and derivatives (sometimes called a Hermite spline). Such segments can then be concatenated to form a C? spline in
the group by matching the boundary conditions (value, first, and second time derivatives) between neighboring
segments.

The time interval in each segment is, without loss of generality, assumed to be the unit interval [0,1]. Any other
interval can be remapped to this by an affine transformation (as can the differentials).

The desired boundary conditions of the segment are specified as group elements for the function values at the
boundaries, and algebra elements for the time derivatives:

B(0) = ByeG (53)
B(1) = B;€G (54)
B'(0) = dyeg (55)
B'(1) = di€g (56)
B"(0) = hyeg (57)
B" (1) h€g (58)

5.1 Segment definition

In order to have enough degrees of freedom to achieve the boundary conditions, the Hermite spline segment is
defined as a product of six terms, one of which is constant over time:

B(t) =S5 () - By (59)

We choose the {a;} to be quintic polynomials with values and derivatives at 0 and 1 that make satisfying the
boundary conditions of B (t) trivial.

as (t) =
a(t) =
as (t) =
an (t) =
a(t) =
or equivalently:
ay (t) 0
an (t) 1
as (t) = 0
a4 (t) 0
as (t) 0

15 4 13
St ot
1 3, 3,
2 2 2" "2
30+ 7t — 48
3+ 8t — 63+t

6t> — 15t* + 102

0 10 -15 6
0 -6 8 -3
0 -4 7 -3
1.3 3 _1
2 2 2 2
o & -1 1

a5 (0) = a4 (0) = a3 (0) = a2 (0) = a1 (0)
a5 (1) = as (1) = a3 (1) = a2 (1)
ap (1)

a; (0)

a5 (0) = ay (0) = a3 (0) = a1 (0)
a5 (1) = ay (1) = ay (1) = a1 (1)
a5 (1)

as (0) = a5 (0) = a3 (0) = a7 (0)
ay (0)

ay (1) =az (1) = ay (1) = af (1)
as (1)

1
R e e =T

_= O = O = O O = = O O

(60)

(61)

(62)
(63)
(64)

(65)

(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)

Thus each polynomial selects for the value, first time derivative, or second time derivative at one of the boundaries.

The parameters of S5 () are then straightforward to assign:

Ps
P4
p3
p2

P1

By Eq.66 all of the factors of Ss (0) are the identity, so we satisfy the first boundary condition trivially:

= dy

~ log (B1-B;")

h

B (0) = By

(77)
(78)
(79)
(80)

(81)

(82)

By Eq.67 and 68 the second boundary condition is satisfied:

B(1) = S5(1)-Bo (83)
- (31.30—1).30 (84)
= B (85)

Similar inspection of S (t) and SZ (t) shows that all four of the boundary conditions on the derivatives {dy, d1, ho, h1 }
are satisfied.

5.2 Time derivatives of B (t)

Because the By factor is constant over time, the time derivatives of B () are taken directly from those of S5 (f),
described in detail above:

B'(t) = S5(t) (86)
B'(t) = S5(t) (87)

5.3 Structural differentials of B (t)

The differentials of B (t) by the boundary parameters {By, B1, do, d1, ho, h1} follow from the differentials of Ss ()
by pj, along with the chain rule.

First we make explicit the parametric perturbations of Bypand Bj:

EEO = exp(€o) - By (88)
By = exp(e1) By (89)
p = log(Bi-By') (90)
= log (exp (e1) - By - BO_1 - exp (—60)) 91)

B(t) = exp(as(t)-ps)-exp(as(t)-ps)-exp (as(t)-ps)-exp (az (t) - p2) -exp(ar (t)-p1) By (92)

Note that changes to the initial value parameter By (via €() affect B(t) both directly and through the resulting
modification of p;, while changes to By (via €1) affect B(t) only through the modification of p;.

To differentiate p; by its arguments, we employ the property that the differential of the inverse is the inverse of
the differential (see document ‘Differential of the Exponential Map’) :

9 ap -

aigi = TZ&;O = (DeXP [Pl]) 1 .
apl B aﬁl -1 _

a730 = Eki:o = (Dexp [Pl]) -—Ad [Bl Bo l} 0

Finally, the structural differentials of B (t) follow by the chain rule:

3B (1)

3B (1)

ohy

(95)
(96)
97)
(98)

(99)

(100)

