Process Noise for Gaussian Random Walks

Ethan Eade

March 1, 2017

1 Introduction: Discrete Constant Velocity Process

When performing recursive state estimation with a Kalman filter (or similar machinery), it is common to model the dynamics of the state as a Markov random walk in the highest estimated time derivatives, with zero-mean normally-distributed increments.

For instance, a constant velocity model for position $x(t)$ and velocity $v(t)$ over discrete time step $\triangle t$ is often written:

$$
\begin{align*}
x(t+\Delta t) & =x(t)+\Delta t \cdot v(t) \tag{1}\\
v(t+\Delta t) & =v(t)+\Delta t \cdot \eta \tag{2}\\
\eta & \in \mathcal{N}\left(0, \Delta t \cdot \sigma_{v}^{2}\right) \tag{3}
\end{align*}
$$

The velocity $v(t)$ wanders away from $v(0)$ with variance proportional to $t \sigma_{v}^{2}$. Figure 1 shows a few time series sampled from such a process. The velocity clearly isn't constant over time - the model is so named because the expected velocity displacement is zero from one step to the next.

Propagating the moments of a joint normal distribution of x and v through one step of the process and applying linearity of expectation yields the familiar mean and covariance updates of the Kalman filter prediction step:

$$
\begin{align*}
&\binom{x}{v} \in \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \tag{4}\\
& A(\Delta t) \equiv\left(\begin{array}{cc}
1 & \Delta t \\
0 & 1
\end{array}\right) \tag{5}\\
& \begin{aligned}
Q(\Delta t) & \equiv\left(\begin{array}{cc}
0 & 0 \\
0 & \Delta t \cdot \sigma_{v}^{2}
\end{array}\right) \\
\eta & \in \mathcal{N}(\mathbf{0}, Q) \\
\boldsymbol{\mu} & \rightarrow \mathrm{E}[A \boldsymbol{\mu}+\boldsymbol{\eta}] \\
& =A \boldsymbol{\mu}
\end{aligned} \tag{6}
\end{align*}
$$

Figure 1: Sampled random walks in velocity with $\sigma_{v}^{2}=1$ and $\triangle t=1$, and the corresponding time series of position.

$$
\begin{align*}
\boldsymbol{\Sigma} & \rightarrow \mathrm{E}\left[(A \boldsymbol{\mu}+\boldsymbol{\eta})(A \boldsymbol{\mu}+\boldsymbol{\eta})^{T}\right] \tag{10}\\
& =\mathrm{E}\left[(A \boldsymbol{\mu})(A \boldsymbol{\mu})^{T}+\boldsymbol{\eta}(A \boldsymbol{\mu})^{T}+(A \boldsymbol{\mu}) \boldsymbol{\eta}^{T}+\boldsymbol{\eta} \boldsymbol{\eta}^{T}\right] \tag{11}\\
& =\mathrm{E}\left[A \boldsymbol{\mu} \boldsymbol{\mu}^{T} A^{T}\right]+\mathrm{E}\left[\boldsymbol{\eta} \boldsymbol{\mu}^{T} A^{T}\right]+\mathrm{E}\left[A \boldsymbol{\mu} \boldsymbol{\eta}^{T}\right]+\mathrm{E}\left[\boldsymbol{\eta} \boldsymbol{\eta}^{T}\right] \tag{12}\\
& =A \cdot \mathrm{E}\left[\boldsymbol{\mu} \boldsymbol{\mu}^{T}\right] \cdot A^{T}+\mathrm{E}[\boldsymbol{\eta}] \cdot \boldsymbol{\mu}^{T} A^{T}+A \boldsymbol{\mu} \cdot \mathrm{E}[\boldsymbol{\eta}]^{T}+\mathrm{E}\left[\boldsymbol{\eta} \boldsymbol{\eta}^{T}\right] \tag{13}\\
& =A \cdot \boldsymbol{\Sigma} \cdot A^{T}+Q \tag{14}
\end{align*}
$$

The covariance increment Q is called the process noise.
For later analysis, we expand the mean and covariance update expressions in terms of Δt :

$$
\begin{align*}
& \boldsymbol{\mu} \rightarrow \boldsymbol{\mu}+\Delta t \cdot\binom{\boldsymbol{\mu}_{v}}{0} \tag{15}\\
& \boldsymbol{\Sigma} \rightarrow \boldsymbol{\Sigma}+\Delta t \cdot\left(\begin{array}{cc}
2 \boldsymbol{\Sigma}_{x, v}+\Delta t \cdot \boldsymbol{\Sigma}_{v, v} & \boldsymbol{\Sigma}_{v, v} \\
\boldsymbol{\Sigma}_{v, v} & \sigma_{v}^{2}
\end{array}\right) \tag{16}
\end{align*}
$$

2 Continuous Constant Velocity Process

Performing the discrete covariance propagation in Eq. 16 once with step Δt produces a different result than performing the propagation twice in a row, each with a half step $\frac{\Delta t}{2}$. That's unfortunate: the resulting variances and correlations will depend on the steps we take to get from t_{0} to $t_{0}+\Delta t$. We'd prefer a discrete update procedure with the property that applying N steps of size $\frac{\Delta t}{N}$ yields the same result as applying one step of size Δt, for any $N>0$. Ideally, we'd like to perform infinitely many propagation steps, each with infinitesimal step size. The result is a Wiener process in velocity (also known as Brownian motion).

With that end in mind, we reformulate the process in the continuous time domain as a system of ordinary differential equations. Differentiating Eqs. 15 and 16 by Δt at $\Delta t=0$ gives independent
systems for the mean and covariance:

$$
\begin{align*}
\dot{\boldsymbol{\mu}} & =\binom{\boldsymbol{\mu}_{v}}{0} \tag{17}\\
\dot{\boldsymbol{\Sigma}} & =\left(\begin{array}{cc}
2 \cdot \boldsymbol{\Sigma}_{x, v} & \boldsymbol{\Sigma}_{v, v} \\
\boldsymbol{\Sigma}_{v, v} & \sigma_{v}^{2}
\end{array}\right) \tag{18}
\end{align*}
$$

These systems are straightforward to solve by definite integration over $0 \ldots t$ of first the higher and then the lower derivatives:

$$
\begin{align*}
\boldsymbol{\mu}(t) & =\binom{\boldsymbol{\mu}_{x}+t \cdot \boldsymbol{\mu}_{v}}{\boldsymbol{\mu}_{v}} \tag{19}\\
\boldsymbol{\Sigma}_{v, v}(t) & =\boldsymbol{\Sigma}_{v, v}+t \cdot \sigma_{v}^{2} \tag{20}\\
\boldsymbol{\Sigma}_{x, v}(t) & =\boldsymbol{\Sigma}_{x, v}+t \cdot \boldsymbol{\Sigma}_{v, v}+\frac{t^{2}}{2} \cdot \sigma_{v}^{2} \tag{21}\\
\boldsymbol{\Sigma}_{x, x}(t) & =\boldsymbol{\Sigma}_{x, x}+2 t \cdot \boldsymbol{\Sigma}_{x, v}+t^{2} \cdot \boldsymbol{\Sigma}_{v, v}+\frac{t^{3}}{3} \cdot \sigma_{v}^{2} \tag{22}
\end{align*}
$$

This solution can be expressed in the same form as the discrete update:

$$
\begin{align*}
\boldsymbol{\mu} & \rightarrow A(t) \cdot \boldsymbol{\mu} \tag{23}\\
& =\boldsymbol{\mu}+\binom{t \cdot \boldsymbol{\mu}_{v}}{0} \tag{24}\\
\boldsymbol{\Sigma} & \rightarrow A(t) \cdot \boldsymbol{\Sigma} \cdot A(t)^{T}+Q(t) \tag{25}\\
& =\boldsymbol{\Sigma}+\left(\begin{array}{cc}
2 t \cdot \boldsymbol{\Sigma}_{x, v}+t^{2} \cdot \boldsymbol{\Sigma}_{v, v} & t \cdot \boldsymbol{\Sigma}_{v, v} \\
t \cdot \boldsymbol{\Sigma}_{v, v} & 0
\end{array}\right)+Q(t) \tag{26}\\
Q(t) & \equiv\left(\begin{array}{cc}
\frac{t^{3}}{3} & \frac{t^{2}}{2} \\
\frac{t^{2}}{2} & t
\end{array}\right) \cdot \sigma_{v}^{2} \tag{27}
\end{align*}
$$

The mean update for the constant velocity model is identical in the discrete and continuous formulations (Eqs. 15 and 24), because the dynamics are linear in μ, but the covariance update differs in the process noise term (Eqs. 6 and 27). Applying the continuous formulation of the process update over a finite time interval Δt yields the same distribution regardless of how the interval is partioned into substeps.

3 Continuous Constant Acceleration Process

The same analysis applies to random walks in higher time derivatives. Consider a discrete constant acceleration model:

$$
\begin{align*}
\left(\begin{array}{l}
x \\
v \\
a
\end{array}\right) & \in \mathcal{N}(\mu, \boldsymbol{\Sigma}) \tag{28}\\
A(\Delta t) & \equiv\left(\begin{array}{ccc}
1 & \Delta t & 0 \\
0 & 1 & \Delta t \\
0 & 0 & 1
\end{array}\right)+\mathcal{O}\left(\Delta t^{2}\right) \tag{29}\\
Q(\Delta t) & \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \Delta t \cdot \sigma_{a}^{2}
\end{array}\right) \tag{30}\\
\mu & \rightarrow A \boldsymbol{\mu} \tag{31}\\
& =\mu+\Delta t \cdot\left(\begin{array}{c}
\mu_{v} \\
\mu_{a} \\
0
\end{array}\right)+\mathcal{O}\left(\Delta t^{2}\right) \tag{32}\\
\boldsymbol{\Sigma} & \rightarrow A \cdot \boldsymbol{\Sigma} \cdot A^{T}+Q \tag{33}\\
& =\boldsymbol{\Sigma}+\Delta t \cdot\left(\begin{array}{ccc}
2 \boldsymbol{\Sigma}_{x, v} & \boldsymbol{\Sigma}_{v, v}+\boldsymbol{\Sigma}_{x, a} & \boldsymbol{\Sigma}_{v, a} \\
\boldsymbol{\Sigma}_{v, v}+\boldsymbol{\Sigma}_{x, a} & 2 \boldsymbol{\Sigma}_{v, a} & \boldsymbol{\Sigma}_{a, a} \\
\boldsymbol{\Sigma}_{v, a} & \boldsymbol{\Sigma}_{a, a} & \sigma_{a}^{2}
\end{array}\right)+\mathcal{O}\left(\Delta t^{2}\right) \tag{34}
\end{align*}
$$

Differentiating the mean and covariance by Δt at $\Delta t=0$ gives

$$
\begin{align*}
& \dot{\mu}=\left(\begin{array}{c}
\mu_{v} \\
\mu_{a} \\
0
\end{array}\right) \tag{35}\\
& \dot{\Sigma}=\left(\begin{array}{ccc}
2 \cdot \boldsymbol{\Sigma}_{x, v} & \boldsymbol{\Sigma}_{v, v}+\boldsymbol{\Sigma}_{x, a} & \boldsymbol{\Sigma}_{v, a} \\
\boldsymbol{\Sigma}+\boldsymbol{\Sigma}_{x, a} & 2 \cdot \boldsymbol{\Sigma}_{v, a} & \boldsymbol{\Sigma}_{a, a} \\
\boldsymbol{\Sigma}_{v, a} & \boldsymbol{\Sigma}_{a, a} & \sigma_{a}^{2}
\end{array}\right) \tag{36}
\end{align*}
$$

Integrating over $0 \ldots t$ from higher to lower derivatives (i.e. from the lower right of $\dot{\Sigma}$ in Eq. 36):

$$
\begin{align*}
\boldsymbol{\mu}(t) & =\boldsymbol{\mu}+\left(\begin{array}{c}
t \cdot \boldsymbol{\mu}_{v}+\frac{t^{2}}{2} \boldsymbol{\mu}_{a} \\
t \cdot \boldsymbol{\mu}_{a} \\
0
\end{array}\right) \tag{37}\\
\boldsymbol{\Sigma}_{a, a}(t) & =\boldsymbol{\Sigma}_{a, a}+t \cdot \sigma_{a}^{2} \tag{38}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{\Sigma}_{v, a}(t)=\boldsymbol{\Sigma}_{v, a}+t \cdot \boldsymbol{\Sigma}_{a, a}+\frac{t^{2}}{2} \cdot \sigma_{a}^{2} \tag{39}\\
& \boldsymbol{\Sigma}_{v, v}(t)=\boldsymbol{\Sigma}_{v, v}+2 t \cdot \boldsymbol{\Sigma}_{v, a}+t^{2} \cdot \boldsymbol{\Sigma}_{a, a}+\frac{t^{3}}{3} \cdot \sigma_{a}^{2} \tag{40}\\
& \boldsymbol{\Sigma}_{x, a}(t)=\boldsymbol{\Sigma}_{x, a}+t \cdot \boldsymbol{\Sigma}_{v, a}+\frac{t^{2}}{2} \cdot \boldsymbol{\Sigma}_{a, a}+\frac{t^{3}}{6} \cdot \sigma_{a}^{2} \tag{41}\\
& \boldsymbol{\Sigma}_{x, v}(t)=\boldsymbol{\Sigma}_{x, v}+t \cdot\left(\boldsymbol{\Sigma}_{v, v}+\boldsymbol{\Sigma}_{x, a}\right)+\frac{3 t^{2}}{2} \cdot \boldsymbol{\Sigma}_{v, a}+\frac{t^{3}}{2} \cdot \boldsymbol{\Sigma}_{a, a}+\frac{t^{4}}{8} \cdot \sigma_{a}^{2} \tag{42}\\
& \boldsymbol{\Sigma}_{x, x}(t)=\boldsymbol{\Sigma}_{x, x}+2 t \cdot \boldsymbol{\Sigma}_{x, v}+t^{2} \cdot\left(\boldsymbol{\Sigma}_{v, v}+\boldsymbol{\Sigma}_{x, a}\right)+t^{3} \cdot \boldsymbol{\Sigma}_{v, a}+\frac{t^{4}}{4} \cdot \boldsymbol{\Sigma}_{a, a}+\frac{t^{5}}{20} \cdot \sigma_{a}^{2} \tag{43}
\end{align*}
$$

Equivalently:

$$
\begin{align*}
\boldsymbol{\Sigma} & \rightarrow A(t) \cdot \boldsymbol{\Sigma} \cdot A(t)^{T}+Q(t) \tag{44}\\
Q(t) & \equiv\left(\begin{array}{ccc}
\frac{t^{5}}{20} & \frac{t^{4}}{8} & \frac{t^{3}}{6} \\
\frac{t^{4}}{8} & \frac{t^{3}}{3} & \frac{t^{2}}{2} \\
\frac{t^{3}}{6} & \frac{t^{2}}{2} & t
\end{array}\right) \cdot \sigma_{a}^{2} \tag{45}
\end{align*}
$$

4 Continuous Constant Jerk Process

Applying similar analysis to a constant jerk (third time derivative) model yields:

$$
\begin{align*}
& \boldsymbol{\mu}(t)=\boldsymbol{\mu}+\left(\begin{array}{c}
t \cdot \boldsymbol{\mu}_{v}+\frac{t^{2}}{2} \boldsymbol{\mu}_{a}+\frac{t^{3}}{6} \boldsymbol{\mu}_{j} \\
t \cdot \boldsymbol{\mu}_{a}+\frac{t^{2}}{2} \boldsymbol{\mu}_{j} \\
t \cdot \boldsymbol{\mu}_{j} \\
0
\end{array}\right) \tag{46}\\
& Q(t) \equiv\left(\begin{array}{cccc}
\frac{t^{7}}{252} & t^{6} & \frac{t^{5}}{30} & t^{4} \\
\frac{t^{6}}{72} & t^{5} & & t^{4} \\
\hline \frac{t^{3}}{6} \\
\frac{t^{5}}{30} & \frac{t^{4}}{8} & \frac{t^{3}}{3} & \frac{t^{2}}{2} \\
\frac{t^{4}}{24} & \frac{t^{3}}{6} & t^{2} & t
\end{array}\right) \cdot \sigma_{j}^{2} \tag{47}
\end{align*}
$$

5 Continuous Damped Velocity Process

For a system where velocity is continuously and proportionally damped towards zero with strength α, the evolution of $\boldsymbol{\mu}=\binom{x}{v}$ over time is a first-order system of linear differential equations:

$$
\begin{align*}
\dot{x} & =v \tag{48}\\
\dot{v} & =-\alpha v \tag{49}
\end{align*}
$$

Figure 2: Sampled discrete damped velocity processes with $\alpha=0.25, \sigma^{2}=1$, and $\triangle t=1$, and the corresponding evolutions of position.

Figure 2 shows a few time series sampled from such a process.
This system can be solved by expressing the system as a matrix and exponentiating:

$$
\begin{align*}
K & \equiv\left(\begin{array}{cc}
0 & 1 \\
0 & -\alpha
\end{array}\right) \tag{50}\\
\dot{\mu} & =K \mu \tag{51}\\
A(t) & \equiv \exp (t \cdot K) \tag{52}\\
& =\left(\begin{array}{cc}
1 & \frac{1-\exp (-\alpha t)}{\alpha} \\
0 & \exp (-\alpha t)
\end{array}\right) \tag{53}\\
\boldsymbol{\mu}(t) & =A(t) \cdot \boldsymbol{\mu} \tag{54}
\end{align*}
$$

For $\alpha \rightarrow 0$, the upper right coefficient of A should be evaluated by Taylor series expansion:

$$
\begin{equation*}
\frac{1-\exp (-\alpha t)}{\alpha}=t \cdot\left(1-\frac{1}{2} \alpha t+\frac{1}{6}(\alpha t)^{2}-\frac{1}{24}(\alpha t)^{3}+\mathcal{O}\left(t^{4}\right)\right) \tag{55}
\end{equation*}
$$

The series expansion also shows that the damped velocity update is identical to the constant velocity update when $\alpha=0$, as expected.
We can formulate the continuous covariance evolution in terms of the dynamics matrix A and the process noise Q :

$$
\begin{align*}
\dot{Q} & \equiv\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right) \tag{56}\\
\dot{\Sigma} & \rightarrow A \boldsymbol{\Sigma} A^{T}+t \dot{Q} \tag{57}\\
& =(I+t K) \cdot \boldsymbol{\Sigma} \cdot(I+t K)^{T}+\mathcal{O}\left(t^{2}\right)+t Q \tag{58}
\end{align*}
$$

$$
\begin{align*}
& =\boldsymbol{\Sigma}+t K \boldsymbol{\Sigma}+t \boldsymbol{\Sigma} K^{T}+\mathcal{O}\left(t^{2}\right)+t Q \tag{59}\\
& =\boldsymbol{\Sigma}+t\left(\begin{array}{cc}
2 \boldsymbol{\Sigma}_{x, v} & \boldsymbol{\Sigma}_{v, v}-\alpha \boldsymbol{\Sigma}_{x, v} \\
\boldsymbol{\Sigma}_{v, v}-\alpha \boldsymbol{\Sigma}_{x, v} & \sigma_{v}^{2}-2 \alpha \boldsymbol{\Sigma}_{v, v}
\end{array}\right)+\mathcal{O}\left(t^{2}\right) \tag{60}
\end{align*}
$$

Differentiating by t at $t=0$ gives:

$$
\dot{\boldsymbol{\Sigma}}=\left(\begin{array}{cc}
2 \boldsymbol{\Sigma}_{x, v} & \boldsymbol{\Sigma}_{v, v}-\alpha \boldsymbol{\Sigma}_{x, v} \tag{61}\\
\boldsymbol{\Sigma}_{v, v}-\alpha \boldsymbol{\Sigma}_{x, v} & \sigma_{v}^{2}-2 \alpha \boldsymbol{\Sigma}_{v, v}
\end{array}\right)
$$

We solve the system by integrating over $0 \ldots t$, starting from the lower right of Eq. 61:

$$
\begin{align*}
\Sigma(t) & =A(t) \cdot \Sigma \cdot A(t)^{T}+Q(t) \tag{62}\\
Q(t) & \equiv\left(\begin{array}{cc}
\frac{4 \exp (-\alpha t)-\exp (-2 \alpha t)+2 \alpha t-3}{2 \alpha^{3}} & \frac{1}{2}\left(\frac{1-\exp (-\alpha t)}{\alpha}\right)^{2} \\
\frac{1}{2}\left(\frac{1-\exp (-\alpha t)}{\alpha}\right)^{2} & \frac{1-\exp (-2 \alpha t)}{2 \alpha}
\end{array}\right) \cdot \sigma_{v}^{2} \tag{63}
\end{align*}
$$

For $\alpha \rightarrow 0$, the coefficients of Q should be evaluated by Taylor series expansions:

$$
\begin{align*}
\frac{1-\exp (-2 \alpha t)}{2 \alpha} & =t \cdot\left(1-\alpha t+\frac{2}{3}(\alpha t)^{2}-\frac{1}{3}(\alpha t)^{3}+\mathcal{O}\left(t^{4}\right)\right) \tag{64}\\
\frac{1}{2}\left(\frac{1-\exp (-\alpha t)}{\alpha}\right)^{2} & =\frac{t^{2}}{2} \cdot\left(1-\alpha t+\frac{7}{12}(\alpha t)^{2}-\frac{1}{4}(\alpha t)^{3}+\mathcal{O}\left(t^{4}\right)\right) \tag{65}\\
\frac{4 \exp (-\alpha t)-\exp (-2 \alpha t)+2 \alpha t-3}{2 \alpha^{3}} & =\frac{t^{3}}{3} \cdot\left(1-\frac{3}{4} \alpha t+\frac{7}{20}(\alpha t)^{2}-\frac{1}{8}(\alpha t)^{3}+\mathcal{O}\left(t^{4}\right)\right) \tag{66}
\end{align*}
$$

The series expansions confirm that the damped velocity process noise is identical to the constant velocity process noise when $\alpha=0$.

