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1 Introduction: Discrete Constant Velocity Process

When performing recursive state estimation with a Kalman filter (or similar machinery), it is com-
mon to model the dynamics of the state as a Markov random walk in the highest estimated time
derivatives, with zero-mean normally-distributed increments.

For instance, a constant velocity model for position x (t) and velocity v (t) over discrete time step4t
is often written:

x (t +4t) = x (t) +4t · v (t) (1)
v (t +4t) = v (t) +4t · η (2)

η ∈ N
(

0, 4t · σ2
v

)
(3)

The velocity v (t) wanders away from v (0) with variance proportional to tσ2
v . Figure 1 shows a few

time series sampled from such a process. The velocity clearly isn’t constant over time – the model is
so named because the expected velocity displacement is zero from one step to the next.

Propagating the moments of a joint normal distribution of x and v through one step of the process
and applying linearity of expectation yields the familiar mean and covariance updates of the Kalman
filter prediction step:

 x

v

 ∈ N (µ, Σ) (4)

A (4t) ≡

 1 4t

0 1

 (5)

Q (4t) ≡

 0 0

0 4t · σ2
v

 (6)

η ∈ N (0, Q) (7)
µ → E [Aµ + η] (8)

= Aµ (9)
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Figure 1: Sampled random walks in velocity with σ2
v = 1 and 4t = 1, and the corresponding time

series of position.

Σ → E
[
(Aµ + η) (Aµ + η)T

]
(10)

= E
[
(Aµ) (Aµ)T + η (Aµ)T + (Aµ) ηT + ηηT

]
(11)

= E
[

AµµT AT
]
+ E

[
ηµT AT

]
+ E

[
AµηT

]
+ E

[
ηηT

]
(12)

= A · E
[
µµT

]
· AT + E [η] · µT AT + Aµ · E [η]T + E

[
ηηT

]
(13)

= A · Σ · AT + Q (14)

The covariance increment Q is called the process noise.

For later analysis, we expand the mean and covariance update expressions in terms of4t:

µ → µ +4t ·

 µv

0

 (15)

Σ → Σ +4t ·

 2Σx,v +4t · Σv,v Σv,v

Σv,v σ2
v

 (16)

2 Continuous Constant Velocity Process

Performing the discrete covariance propagation in Eq.16 once with step4t produces a different result
than performing the propagation twice in a row, each with a half step 4t

2 . That’s unfortunate: the
resulting variances and correlations will depend on the steps we take to get from t0 to t0 +4t . We’d
prefer a discrete update procedure with the property that applying N steps of size 4t

N yields the same
result as applying one step of size 4t, for any N > 0. Ideally, we’d like to perform infinitely many
propagation steps, each with infinitesimal step size. The result is a Wiener process in velocity (also
known as Brownian motion).

With that end in mind, we reformulate the process in the continuous time domain as a system of
ordinary differential equations. Differentiating Eqs. 15 and 16 by 4t at 4t = 0 gives independent
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systems for the mean and covariance:

µ̇ =

 µv

0

 (17)

Σ̇ =

 2 · Σx,v Σv,v

Σv,v σ2
v

 (18)

These systems are straightforward to solve by definite integration over 0 . . . t of first the higher and
then the lower derivatives:

µ (t) =

 µx + t · µv

µv

 (19)

Σv,v (t) = Σv,v + t · σ2
v (20)

Σx,v (t) = Σx,v + t · Σv,v +
t2

2
· σ2

v (21)

Σx,x (t) = Σx,x + 2t · Σx,v + t2 · Σv,v +
t3

3
· σ2

v (22)

This solution can be expressed in the same form as the discrete update:

µ → A (t) · µ (23)

= µ +

 t · µv

0

 (24)

Σ → A (t) · Σ · A (t)T + Q (t) (25)

= Σ +

 2t · Σx,v + t2 · Σv,v t · Σv,v

t · Σv,v 0

+ Q (t) (26)

Q (t) ≡

 t3

3
t2

2
t2

2 t

 · σ2
v (27)

The mean update for the constant velocity model is identical in the discrete and continuous formula-
tions (Eqs. 15 and 24), because the dynamics are linear in µ, but the covariance update differs in the
process noise term (Eqs. 6 and 27). Applying the continuous formulation of the process update over
a finite time interval 4t yields the same distribution regardless of how the interval is partioned into
substeps.

3 Continuous Constant Acceleration Process

The same analysis applies to random walks in higher time derivatives. Consider a discrete constant
acceleration model:
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
x

v

a

 ∈ N (µ, Σ) (28)

A (4t) ≡


1 4t 0

0 1 4t

0 0 1

+O
(
4t2

)
(29)

Q (4t) ≡


0 0 0

0 0 0

0 0 4t · σ2
a

 (30)

µ → Aµ (31)

= µ +4t ·


µv

µa

0

+O
(
4t2

)
(32)

Σ → A · Σ · AT + Q (33)

= Σ +4t ·


2Σx,v Σv,v + Σx,a Σv,a

Σv,v + Σx,a 2Σv,a Σa,a

Σv,a Σa,a σ2
a

+O
(
4t2

)
(34)

Differentiating the mean and covariance by4t at4t = 0 gives

µ̇ =


µv

µa

0

 (35)

Σ̇ =


2 · Σx,v Σv,v + Σx,a Σv,a

Σ + Σx,a 2 · Σv,a Σa,a

Σv,a Σa,a σ2
a

 (36)

Integrating over 0 . . . t from higher to lower derivatives (i.e. from the lower right of Σ̇ in Eq. 36):

µ (t) = µ +


t · µv +

t2

2 µa

t · µa

0

 (37)

Σa,a (t) = Σa,a + t · σ2
a (38)
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Σv,a (t) = Σv,a + t · Σa,a +
t2

2
· σ2

a (39)

Σv,v (t) = Σv,v + 2t · Σv,a + t2 · Σa,a +
t3

3
· σ2

a (40)

Σx,a (t) = Σx,a + t · Σv,a +
t2

2
· Σa,a +

t3

6
· σ2

a (41)

Σx,v (t) = Σx,v + t · (Σv,v + Σx,a) +
3t2

2
· Σv,a +

t3

2
· Σa,a +

t4

8
· σ2

a (42)

Σx,x (t) = Σx,x + 2t · Σx,v + t2 · (Σv,v + Σx,a) + t3 · Σv,a +
t4

4
· Σa,a +

t5

20
· σ2

a (43)

Equivalently:

Σ → A (t) · Σ · A (t)T + Q (t) (44)

Q (t) ≡


t5

20
t4

8
t3

6
t4

8
t3

3
t2

2
t3

6
t2

2 t

 · σ2
a (45)

4 Continuous Constant Jerk Process

Applying similar analysis to a constant jerk (third time derivative) model yields:

µ (t) = µ +


t · µv +

t2

2 µa +
t3

6 µj

t · µa +
t2

2 µj

t · µj

0

 (46)

Q (t) ≡


t7

252
t6

72
t5

30
t4

24
t6

72
t5

20
t4

8
t3

6
t5

30
t4

8
t3

3
t2

2
t4

24
t3

6
t2

2 t

 · σ
2
j (47)

5 Continuous Damped Velocity Process

For a system where velocity is continuously and proportionally damped towards zero with strength

α, the evolution of µ =

 x

v

 over time is a first-order system of linear differential equations:

ẋ = v (48)
v̇ = −αv (49)
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Figure 2: Sampled discrete damped velocity processes with α = 0.25, σ2 = 1, and 4t = 1, and the
corresponding evolutions of position.

Figure 2 shows a few time series sampled from such a process.

This system can be solved by expressing the system as a matrix and exponentiating:

K ≡

 0 1

0 −α

 (50)

µ̇ = Kµ (51)
A (t) ≡ exp (t · K) (52)

=

 1 1−exp(−αt)
α

0 exp (−αt)

 (53)

µ (t) = A (t) · µ (54)

For α→ 0, the upper right coefficient of A should be evaluated by Taylor series expansion:

1− exp (−αt)
α

= t ·
(

1− 1
2

αt +
1
6
(αt)2 − 1

24
(αt)3 +O

(
t4
))

(55)

The series expansion also shows that the damped velocity update is identical to the constant velocity
update when α = 0, as expected.

We can formulate the continuous covariance evolution in terms of the dynamics matrix A and the
process noise Q:

Q̇ ≡

 0 0

0 σ2
v

 (56)

Σ → AΣAT + tQ̇ (57)

= (I + tK) · Σ · (I + tK)T +O
(

t2
)
+ tQ (58)
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= Σ + tKΣ + tΣKT +O
(

t2
)
+ tQ (59)

= Σ + t

 2Σx,v Σv,v − αΣx,v

Σv,v − αΣx,v σ2
v − 2αΣv,v

+O
(

t2
)

(60)

Differentiating by t at t = 0 gives:

Σ̇ =

 2Σx,v Σv,v − αΣx,v

Σv,v − αΣx,v σ2
v − 2αΣv,v

 (61)

We solve the system by integrating over 0 . . . t, starting from the lower right of Eq. 61:

Σ (t) = A (t) · Σ · A (t)T + Q (t) (62)

Q (t) ≡

 4 exp(−αt)−exp(−2αt)+2αt−3
2α3

1
2

(
1−exp(−αt)

α

)2

1
2

(
1−exp(−αt)

α

)2 1−exp(−2αt)
2α

 · σ2
v (63)

For α→ 0, the coefficients of Q should be evaluated by Taylor series expansions:

1− exp (−2αt)
2α

= t ·
(

1− αt +
2
3
(αt)2 − 1

3
(αt)3 +O

(
t4
))

(64)

1
2

(
1− exp (−αt)

α

)2
=

t2

2
·
(

1− αt +
7
12

(αt)2 − 1
4
(αt)3 +O

(
t4
))

(65)

4 exp (−αt)− exp (−2αt) + 2αt− 3
2α3 =

t3

3
·
(

1− 3
4

αt +
7

20
(αt)2 − 1

8
(αt)3 +O

(
t4
))

(66)

The series expansions confirm that the damped velocity process noise is identical to the constant
velocity process noise when α = 0.
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