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1 Introduction: Discrete Constant Velocity Process

When performing recursive state estimation with a Kalman filter (or similar machinery), it is com-
mon to model the dynamics of the state as a Markov random walk in the highest estimated time
derivatives, with zero-mean normally-distributed increments.

For instance, a constant velocity model for position x (t) and velocity v (t) over discrete time step At
is often written:
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The velocity v () wanders away from v (0) with variance proportional to to2. Figure 1 shows a few
time series sampled from such a process. The velocity clearly isn’t constant over time — the model is
so named because the expected velocity displacement is zero from one step to the next.

Propagating the moments of a joint normal distribution of x and v through one step of the process
and applying linearity of expectation yields the familiar mean and covariance updates of the Kalman
filter prediction step:
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Figure 1: Sampled random walks in velocity with 02 = 1 and At = 1, and the corresponding time
series of position.
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The covariance increment Q is called the process noise.

For later analysis, we expand the mean and covariance update expressions in terms of At:
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2 Continuous Constant Velocity Process

Performing the discrete covariance propagation in Eq.16 once with step At produces a different result

than performing the propagation twice in a row, each with a half step % That’s unfortunate: the
resulting variances and correlations will depend on the steps we take to get from ¢ to tg + At . We'd

prefer a discrete update procedure with the property that applying N steps of size % yields the same
result as applying one step of size At, for any N > 0. Ideally, we’d like to perform infinitely many
propagation steps, each with infinitesimal step size. The result is a Wiener process in velocity (also
known as Brownian motion).

With that end in mind, we reformulate the process in the continuous time domain as a system of
ordinary differential equations. Differentiating Eqs. 15 and 16 by At at At = 0 gives independent



systems for the mean and covariance:
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These systems are straightforward to solve by definite integration over 0...¢ of first the higher and
then the lower derivatives:
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This solution can be expressed in the same form as the discrete update:
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The mean update for the constant velocity model is identical in the discrete and continuous formula-
tions (Eqs. 15 and 24), because the dynamics are linear in y, but the covariance update differs in the
process noise term (Egs. 6 and 27). Applying the continuous formulation of the process update over
a finite time interval At yields the same distribution regardless of how the interval is partioned into
substeps.

3 Continuous Constant Acceleration Process

The same analysis applies to random walks in higher time derivatives. Consider a discrete constant
acceleration model:
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Differentiating the mean and covariance by At at At = 0 gives
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Integrating over 0. .. t from higher to lower derivatives (i.e. from the lower right of X in Eq. 36):
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4 Continuous Constant Jerk Process

Applying similar analysis to a constant jerk (third time derivative) model yields:
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5 Continuous Damped Velocity Process

For a system where velocity is continuously and proportionally damped towards zero with strength

X

«, the evolution of y = ( ) over time is a first-order system of linear differential equations:
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Figure 2: Sampled discrete damped velocity processes with & = 0.25, 0> = 1, and At = 1, and the
corresponding evolutions of position.

Figure 2 shows a few time series sampled from such a process.

This system can be solved by expressing the system as a matrix and exponentiating:
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For « — 0, the upper right coefficient of A should be evaluated by Taylor series expansion:
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The series expansion also shows that the damped velocity update is identical to the constant velocity
update when a = 0, as expected.

We can formulate the continuous covariance evolution in terms of the dynamics matrix A and the

process noise Q:
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Differentiating by t at t = 0 gives:

¥ - zzx,v Zv,v - “Zx,v
Tpo— aZyy (75 — 20Xy,

We solve the system by integrating over 0.. . ¢, starting from the lower right of Eq. 61:
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For « — 0, the coefficients of Q should be evaluated by Taylor series expansions:
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The series expansions confirm that the damped velocity process noise is identical to the constant

velocity process noise when &« = 0.



