Rotation Between Two Vectors in \mathbb{R}^{3}

This is valid and numerically stable as long as the two vectors a and b are not pointing in opposite directions:

$$
\begin{aligned}
a, b & \in \mathbb{R}^{3} \\
\hat{a} & =\frac{a}{\|a\|} \\
\hat{b} & =\frac{b}{\|b\|} \\
\omega & =\hat{a} \times \hat{b} \\
c & =\frac{1}{1+\hat{a}^{T} \hat{b}} \\
{ }^{b} R_{a} & =I_{3}+\omega_{\times}+c \omega_{\times}^{2} \\
& =\left(\begin{array}{ccc}
1-c\left(\omega_{2}^{2}+\omega_{3}^{2}\right) & c \omega_{1} \omega_{2}-\omega_{3} & c \omega_{1} \omega_{3}+\omega_{2} \\
c \omega_{1} \omega_{2}+\omega_{3} & 1-c\left(\omega_{1}^{2}+\omega_{3}^{2}\right) & c \omega_{2} \omega_{3}-\omega_{1} \\
c \omega_{1} \omega_{3}-\omega_{2} & c \omega_{2} \omega_{3}+\omega_{1} & 1-c\left(\omega_{1}^{2}+\omega_{2}^{2}\right)
\end{array}\right)
\end{aligned}
$$

When $\hat{a}^{T} \hat{b}<\epsilon-1$, the rotation is best parameterized by first flipping around a vector perpendicular to a. Let such a vector be p:

$$
\begin{aligned}
p^{T} a & =0 \\
p^{T} p & =1
\end{aligned}
$$

The rotation which leaves p fixed and sends \hat{a} to $-\hat{a}$ is then:

$$
{ }^{-a} R_{a}=2 p p^{T}-I_{3}
$$

Composing this with ${ }^{b} R_{-a}$ yields the desired rotation, avoiding singularities:

$$
\begin{aligned}
{ }^{b} R_{a} & ={ }^{b} R_{-a} \cdot{ }^{-a} R_{a} \\
& =\left(I_{3}-\omega_{\times}+\frac{1}{1-\hat{a}^{T} \hat{b}} \cdot \omega_{\times}^{2}\right) \cdot\left(2 p p^{T}-I_{3}\right)
\end{aligned}
$$

