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Abstract

Simultaneous localisation and mapping is the task of estimating from sensor observa-

tions both motion and structure in an unknown environment. Performing SLAM with

a single video camera, while an attractive prospect, adds its own particular difficulties

to the already considerable general challenges of the problem. This thesis advances

the state of the art in monocular SLAM in terms of efficiency, richness of scene de-

scription, statistical correctness, and robustness.

First, a SLAM algorithm from the robotics literature, designed to permit efficient op-

eration with complex maps, is adapted to the monocular setting. A method for effi-

ciently and correctly adding landmarks to the map is presented. The implemented

SLAM system accurately maps thousands of landmarks in real time, giving an order-

of-magnitude performance improvement over previous methods.

Next, the system is extended to allow incorporation of edge landmarks as well as

points. Edgelet landmarks and their representation are defined, and a method is de-

scribed for reliably tracking edgelets, even in the presence of measurement ambiguity.

An efficient selection algorithm for acquiring new edgelets from video allows the sys-

tem to quickly extend the map. The working system produces geometrically accurate

and meaningful edge maps at frame rate.

With a focus on preserving statistical consistency during estimation, a novel monoc-

ular SLAM algorithm is presented. Estimation proceeds on a graph of local maps,

partitioning and coalescing the observations taken from video. Careful parameterisa-

tion keeps local maps consistent, while optimisation of the connecting graph structure

aids global convergence. The system can handle thousands of landmarks at frame

rate, while delivering statistical performance superior to existing methods.

Finally, this thesis mitigates the problems of tracking failure and large-scale localisa-

tion with a unified framework for loop closing and recovery. A hierarchical method

is presented for finding correspondences between new video images and the existing

map, using local and global appearance models and structure estimates. The frame-

work is instantiated within the graph-based monocular SLAM system. The extended

implementation continues mapping despite repeated tracking failures, successfully

joining maps and closing loops in real time.
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1
Introduction

1.1 Simultaneous Localisation and Mapping

Simultaneous localisation and mapping (SLAM) is the process by which a mobile en-

tity answers two primary questions: “Where am I?” and “What is the structure of my

environment?”. The entity, which might be a robot, a vehicle, or a human, requires the

answers continuously, as navigation or other decisions depend upon them. The en-

tity’s sensors provide the information from which a SLAM algorithm produces these

on-the-fly results. The nature of the sensors and results varies with the entity and the

algorithm.

Humans have been successfully practising SLAM for some time now. We observe the

environment through vision, sound, balance, touch, smell, and taste. Our brain com-

bines these observations, and – exploiting significant assumptions and prior knowl-

edge – reports our location and the nature of the surroundings, both quantitatively
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and qualitatively. For instance, the localisation question might be answered “at home”

or “riding downhill on a bicycle at about 20 mph”. The mapping result might be an

abstract conception of a floor plan, or a set of topological relationships between places

of interest. The process is usually unconscious. Occasionally, however, fusing all of

the evidence into a best guess, while accommodating uncertainty, requires conscious

effort.

For synthetic systems, the questions and the algorithm of SLAM must be specified

explicitly. For the task of robotic or vehicular navigation, the most useful localisation

and mapping output is geometric in nature. Pose and structure estimates are repre-

sented in specific coordinate systems and parameterisations. The uncertainty in these

estimates must be explicit and readily available to the system, to aid decision making.

Accurate, reliable, and efficient SLAM is crucial for meaningful autonomy in unknown

surroundings. Even if the SLAM platform is passive, merely following along with a

human or robot, it gives the active entity a richer knowledge of its motion and the

environment. The accrued map is also useful in itself, as a persistent description of

the explored territory.

1.2 Monocular SLAM

A variety of sensors have been employed for SLAM with robots and vehicles. Laser

range finders or sonar give both range and bearing measurements for a field of points

in the environment. Much of the work in robotic SLAM assumes that such 3D geomet-

ric measurements are available, in addition to mechanical odometry readings from the

robot. However, the equipment is costly, bulky, and resource-hungry. Furthermore,

data association of one set of measurements from the sensor with another can be diffi-

cult, as only the perceived geometry can be used to distinguish parts of the scene.

A video camera addresses these concerns, but introduces some of its own. Cameras

are lightweight, low-power devices that provide rich data at a relatively high sampling
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rate. Image information is highly distinctive, and the extensive research on extracting

it in useful forms can be brought to bear. However, the images captured from a camera

lack the 3D information provided by laser range finders. Each pixel is a measure of

light intensity or frequency along a ray, but the distance along the ray to an object in

the world is unknown to the camera. This can be somewhat mitigated with a stereo

camera rig, but then the advantages of low-power and compactness are also lessened.

This thesis presents contributions in the realm of SLAM with a single video camera

as the only sensor – monocular SLAM. A review of important work in structure from

motion and SLAM with vision is given in Section 2.2.

1.3 Efficient SLAM

In one popular and well-tested framework for representing structure, a SLAM sys-

tem selects sparse, distinct landmarks in the environment, and estimates their parame-

ters using sensor data. Landmarks might be geometric features (when using a range

finder) or visual features (when using a camera). As the number of landmarks es-

timated by the system increases, so does the computational effort required in order

to fuse new sensor measurements into the state. In the case of the commonly used

Extended Kalman Filter framework for SLAM, the cost grows quadratically with the

number of landmarks.

Extensive research, especially in the robotics literature, has focused on making the es-

timation more efficient when dealing with complex maps with many landmarks. Sec-

tion 2.3 reviews some of the salient approaches. In particular, the FastSLAM particle

filtering method allows state updates with linear or sublinear computational cost.

In Chapter 4 of this thesis, I show how FastSLAM can be applied to monocular SLAM,

allowing for frame-rate mapping of thousands of 3D point landmarks. The applica-

tion is nontrivial because of the difficulties associated with a bearing only sensor. In

particular, the partial observation model requires special care to be taken when adding
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new landmarks to the map. Chapter 4 also shows that top-down active search for lo-

cally planar textured patches can be fruitfully employed in the particle filter setting,

making image processing efficient. The resulting system gives accurate trajectory and

structure estimates for small scenes with many landmarks, all while running at frame

rate.

1.4 Edge Landmarks in Monocular SLAM

Existing work in vision SLAM has been motivated both by the robotics SLAM liter-

ature and the computer vision research in structure from motion (see Section 2.2.1).

Thus 3D points, which are tracked as small regions in images, are a natural choice for

landmarks. However, much more information can be gleaned from the video.

In particular, the edge information in an image reflects edge structures in the world.

Straight edges are useful, well-studied ways of representing certain classes of struc-

ture, often encountered in indoor environments. Edge models have been variously

and successfully employed in model-based tracking, and representing and estimating

edges within monocular SLAM would yield a richer map with higher-level geometric

primitives.

Chapter 5 describes how edge landmarks can be incorporated into monocular SLAM.

I introduce the edgelet, with a landmark representation and appearance model that

are the edge analogues to 3D points and locally planar textured patches. Edgelets are

short, straight pieces of 1D structure that appear as intensity discontinuities in images.

Chapter 5 shows how they can be efficiently acquired from video and tracked using

top-down search. The method is implemented within the framework of Chapter 4,

and the resulting maps model structure not captured by point landmarks.
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1.5 Graph SLAM

Though the particle filter SLAM system described in Chapter 4 achieves accurate local-

isation and efficient operation with many landmarks, it is unable to produce coherent

maps over large trajectories. The cause of the problem is a lack of consistency in the

estimate of the filter. The uncertainty in the state is underestimated, preventing the

filter from converging to the true result.

In Chapter 6, I discuss the causes of this inconsistency and present a new SLAM frame-

work, Graph SLAM, which maintains independent local maps connected in a graph

structure. The design of the framework is motivated by consistency, but efficient oper-

ation with many landmarks is an important secondary benefit. The estimation process

is factored into updates to local maps and refinements of the inter-map graph struc-

ture.

The method is inspired by earlier submapping strategies (cf. Section 2.3.3), but pays

special attention to the nonlinear observation model of monocular SLAM. The trans-

formations between local coordinate frames are determined from shared landmarks’

estimates in the nodes, so edge estimates improve with nearby local maps. Further,

cycle constraints in the graph are accommodated by iterative global graph optimisa-

tion.

The method is implemented, and its consistency is tested using Monte-Carlo simula-

tion. The results show that it is qualitatively more consistent than FastSLAM or Ex-

tended Kalman Filter SLAM, while maintaining frame-rate operation with thousands

of landmarks.

1.6 Loop Closing and Recovery

Tracking-based vision SLAM systems, such as those described in Chapter 4 and Chap-

ter 6, suffer from a crippling fragility. A sudden bump or temporary occlusion can
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cause tracking to fail, at which point the system can either stop mapping or corrupt

the map estimate. This sensitivity makes visual SLAM systems unusable in any but

the most controlled scenarios. Even when the tracking assumption isn’t violated, the

localisation estimate around sufficiently large loops is innaccurate enough to prevent

top-down search from finding landmarks when they reappear.

The problem of tracking failure can be addressed with recovery methods, which at-

tempt to detect failed tracking, and stop updating the structure estimate. Then, upon

identifying previously-mapped landmarks, the system reinitialises the pose estimate.

While this approach prevents corruption of the map, it also precludes additional map-

ping before existing structure is reencountered. If tracking fails at the beginning of a

run, and the camera doesn’t return to the pre-failure area until the end of the run, then

no mapping is performed in the middle of the sequence.

In Chapter 7, I present a unified framework for recovering from tracking failure and

closing loops. The framework uses a hierarchical appearance and structure model,

first identifying regions visually similar to the current view, and then matching local

landmarks and structure. Instantiated within the graph-based setting of Chapter 6,

both recovery and loop closing reduce to adding an edge to graph, according to the

appearance and structure correspondence. Global graph optimisation then accommo-

dates new cycle constraints induced by loop closure.

The visual similarity indexing relies on a bag-of-words appearance model, adapted

from the image-retrieval application for which it has recently received much attention

in computer vision. Instead of identifying image matches in a database, the system se-

lects graph nodes with visual appearance that resembles the latest video frame. Then

a local dictionary of landmark appearance is queried for image-to-map correspon-

dences, allowing relative pose recovery. Efficient invariant descriptors are used for

both global and local appearance models.

The implemented system successfully recovers from tracking failure due to jerky cam-

era motion and total occlusion, and closes loops even when active search fails. Further,
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failed tracking does not halt the mapping process. Instead, the system continues map-

ping in a new graph, which is later reconnected to the existing graph upon recovery.

The appearance models are built online, without any offline training phase. All com-

putation is performed at frame rate. Results are shown for challenging indoor and

outdoor sequences.

1.7 Layout

The primary contributions of this thesis have been sketched by the above introduc-

tion; each corresponding chapter declares its contributions in more detail. Chapter 4

describes monocular SLAM with the FastSLAM algorithm, and Chapter 5 shows how

edge landmarks can be added to the system. Chapter 6 presents the Graph SLAM for-

mulation, and Chapter 7 extends Graph SLAM with unified loop closing and recovery.

Chapter 2 reviews important previous work in SLAM in general, structure from mo-

tion, and visual SLAM. It also discusses the various approaches to getting around the

scaling problems of SLAM. Each chapter in the body of the thesis also reviews more

specifically related work.

Chapter 3 presents the mathematical framework and notation employed by the rest of

the thesis. This includes a brief review of rigid transformations and their Lie group

properties and representations. The Kalman filter and its extension are described

from a general perspective, with a localisation example. Then the well-established

Extended Kalman Filter SLAM framework is presented.

Chapter 8 concludes the thesis by summarising the contributions presented and dis-

cussing directions for further research.
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1.8 Publications

The kernels of the main chapters of this thesis have been peer-reviewed and presented

at conferences. The following publications are the result:

Eade & Drummond (2006b): Scalable Monocular SLAM. In Proceedings of Computer

Vision and Pattern Recognition (CVPR), New York, 2006.

Eade & Drummond (2006a, 2008a): Edge Landmarks in Monocular SLAM. In Proceed-

ings of the British Machine Vision Conference (BMVC), Edinburgh, 2006. Also in press for

Image and Vision Computing (IVC), 2008.

Eade & Drummond (2007): Monocular SLAM as a Graph of Coalesced Observations.

In Proceedings of the International Conference on Computer Vision (ICCV), Rio de Janeiro,

2007.

Eade & Drummond (2008b): Unified Loop Closing and Recovery for Monocular SLAM.

In Proceedings of the British Machine Vision Conference (BMVC), Leeds, 2008.



2
Background

This chapter describes important work of the last two decades relevant to the simulta-

neous localisation and mapping (SLAM) and structure from motion (SFM) problems.

First, the probabilistic framework for SLAM is reviewed, with an emphasis on the

common filtering techniques employed by applications. Next, the development of

approaches to the now well-understood structure from motion problem is described.

Recursive approaches to SFM are closely related to the SLAM problem, so initial and

more recent efforts in recursive SFM are presented. A review of the work on SLAM

using vision as the primary input follows, which provides a baseline for the contribu-

tions of this thesis. Finally, the limitations of the basic approach to SLAM in general

are described, and a survey of the various approaches to mitigating or circumventing

these limitations is presented.
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2.1 Simultaneous Localisation and Mapping

If the structure of the environment is known, determining the pose of the sensor plat-

form (localisation) is straightforward. If, instead, the trajectory of the sensor plat-

form is known, building a representation of the environment (mapping) is equally

approachable. However, when the robot or camera is exploring unknown territory

with an unknown or uncertain trajectory, the problem becomes considerably more

difficult. Both the map and the motion must be estimated from noisy sensor input,

and an up-to-date estimate of both must be available in a useful form. This is the

domain of simultaneous localisation and mapping (SLAM).

In this section I review the SLAM literature, starting with the first presentation of

SLAM as a well-defined statistical estimation problem. The important initial results

come almost exclusively from the robotics community. The terms robot, vehicle, and

sensor platform are used interchangeably to denote a mobile entity that observes the

environment.

2.1.1 Probabilistic Framework

The seminal paper of Smith & Cheeseman (1988) gives a general treatment of un-

certainty in geometric relationships and parameterisations. The key insight is that

uncertain relationships should be represented by a probability distribution over spa-

tial parameters. In particular, the first and second moments of the actual distribution

are sufficient for modelling relationships and quantities in most domains. Thus, the

natural choice of representation is a mean vector and covariance with dimension equal

to the total number of uncertain parameters. The system state mean and covariance

can be “built” incrementally by adding a new element to the mean and a new row

and column to the covariance matrix for each modelled relation. The resulting state,

as a whole, is called the stochastic map. In general, the problem of SLAM as pursued in

this thesis boils down to representing and maintaining the stochastic map, and fusing

sensor observations into it.
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Conveniently, representing uncertain quantities by the first and second moments of

their distributions renders transformation and propagation straightforward. Smith

& Cheeseman (1988) and Durrant-Whyte (1988) show that a truncated Taylor expan-

sion of a smooth function sends the mean through the function and transforms the

covariance by the Jacobian of the function at the mean. The information (inverse co-

variance) transforms by the transpose of the inverse of the transformation, as shown

in Durrant-Whyte (1988). For linear transformations and Gaussian distributions, this

process yields the exact resulting distribution. In other cases, the result is a linear-

Gaussian approximation of the true distribution.

Given this representation, the Kalman Filter (Kalman (1960)) is the natural machinery

for maintaining a stochastic map (Smith & Cheeseman (1988), Moutarlier & Chatila

(1990)). It is the optimal estimator for linear transformations and Gaussian distribu-

tions, with the Extended Kalman Filter (EKF) providing a sub-optimal estimator in the

non-linear or non-Gaussian case (Maybeck (1979)). An observation of one part of the

state actually causes updates to the whole state, due to correlations between the esti-

mates. These correlations are encoded by the off-diagonal elements of the covariance.

Moutarlier & Chatila (1990) describe SLAM in the EKF framework: All objects, called

landmarks, are represented by coordinates in a common, global frame, including the

vehicle state. The parameters of the vehicle follow a dynamic model, which predicts the

motion of the vehicle over time, incorporating any information given by odometry.

Measurements from sensors follow an observation model, which, given the current state

estimate, predicts the measurement. The process and observation models might be

linear or linearised, depending on the nature of the sensor. Noisy observations of

landmarks are incorporated into the state estimate, yielding a posterior. Because each

individual observation (assumed independent of other observations) depends only

on the state of the robot and a fixed portion of the state vector corresponding to the

modelled object, the Jacobian of the observation is sparse. Thus, the filter update for

one observation takes quadratic time in the dimension of the state vector, in contrast

to the cubic time required by the EKF in general. An experimental implementation

is described in which a mobile robot successfully builds a sparse, two-dimensional

line-segment map of its environment.
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2.1.2 The Importance of Correlations

Unlike earlier formulations, the stochastic map of Smith & Cheeseman (1988) and

Moutarlier & Chatila (1990) explicitly model the correlations between different parts

of the state. These correlations have been shown to be crucial to the accuracy and sta-

tistical consistency of SLAM. Castellanos et al (1997) perform an experimental com-

parison of SLAM using an EKF with either a full covariance (all correlations) or a

block-diagonal covariance (where landmarks are assumed independent of each other).

In the latter case, the landmark estimates quickly become overconfident – that is, the

covariance shrinks below the actual uncertainty in the landmark coordinates, and con-

vergence to the true solution becomes impossible. In contrast, the full-covariance EKF

avoids over-optimistic uncertainty estimates, and, via the cross-covariances, changes

the estimates of unobserved landmarks when others are observed. Though the author

refers to these updates explicitly as backward estimations, they are an implicit result

of a full-covariance EKF formulation of SLAM.

The same conclusions are drawn by Csorba (1997), by examining the mathematical

machinery of the EKF instead of testing experimentally. Landmark estimates become

correlated through the uncertain vehicle state. Estimating the vehicle and the land-

mark states from observations necessarily correlates their estimate errors with each

other.

The importance of maintaining correlations is further examined by Dissanayake et al

(2001), including a theoretical treatment of the questions of correlation and conver-

gence within the Kalman filter SLAM framework. As observations from sensors are

repeatedly fused in the filter, the error and uncertainty of landmark estimates decrease

monotonically to a lower bound given by the initial uncertainty of the vehicle. Fur-

ther, the relative landmark location estimates tend to certainty, and they become fully

correlated. Intuitively, the map estimate becomes rigid – certain knowledge of a small

subset of landmarks determines all other landmark locations with certainty. Omitting

the cross correlations destroys the structure of the problem and the convergence of the

solution.
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The EKF SLAM framework has been employed with success in many robotic plat-

forms. Betge-Brezetz et al (1996) describe a robot equipped with a laser range-finder

that extracts natural landmarks from the environment and performs recursive estima-

tion with the EKF. The robot pose is represented in the filter with four parameters, for

3D position and yaw, while landmarks are parameterised only by their 3D positions.

Observations are temporally sparse; results show decent mapping of 12 landmarks

over 12 prediction-observation steps. Each time step includes observation of multi-

ple landmarks. The estimated trajectory is more accurate than that of odometry alone

when compared to ground-truth.

Csorba (1997) implements SLAM with a laser range-finder and the EKF. The system

delivers consistent and accurate performance in an environment with 20 natural land-

marks, extracted from the laser scans. Relative observations between landmarks are

used to update the filter, described in further detail below.

Davison & Murray (1998) rely on the EKF SLAM algorithm for a mobile robot using

active stereo vision as the primary sensor, reporting consistent results. Work on more

sophisticated SLAM algorithms often treats the EKF as the optimal filter and uses its

results as a reference (Newman (1999),Williams (2001), Guivant (2002), Bailey (2002)).

2.2 Localisation and Mapping with Vision

I first review batch structure from motion techniques, then the adaptation of these

techniques to recursive frameworks, and finally true SLAM with vision as the primary

sensor.

2.2.1 Structure from Motion

In general, structure from motion (SFM) refers to the problem of estimating camera

poses and scene structure from multiple images. It might be more aptly called struc-
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ture and motion. I consider here techniques for estimating structure and motion from

an image sequence using batch methods: Given keypoint correspondences or other

image observations from the whole sequence, these algorithms yield an optimal es-

timate of motion and scene parameters, and sometimes intrinsic camera parameters.

Early SFM work depends on strictly controlled or known camera motion or highly

constrained scene structure. The review starts with the advent of more mature meth-

ods. See Hartley & Zisserman (2004) for a bibliography including earlier literature.

Tomasi & Kanade (1991) present an efficient factorisation of structure and motion es-

timation when working with orthographic projection cameras. Interest point features

are tracked through a sequence of images, and then all feature tracks are processed in

parallel. Three dimensional points, corresponding to the interest points, are described

by world-centred (instead of camera-centred) coordinates, avoiding ill-conditioned es-

timates when scene depth is small relative to viewing distance. Crucially, by consid-

ering “shape” instead of depth, the structure and motion estimates become indepen-

dent of each other. A singular value decomposition (SVD) is used to split the motion

from the structure given all of the data, and the result is robust to noise in the mea-

surements. Note that this factorisation holds only for orthographic projection cam-

eras (and not for perspective projection, where the projection function is nonlinear in

depth).

Taylor et al (1991) consider the problem of estimating structure and motion from mul-

tiple images where the structure and camera motion is constrained to a 2D plane. This

scenario is equivalent to a camera moving in a fixed plane parallel to the ground,

observing vertical edges. The presented solution, like most subsequent approaches,

attempts to minimise the reprojection error of the observations. This is approached in

an iterative least-squares framework which is common to most batch SFM methods.

At each iteration, the current estimates of motion and structure provide a linearisation

point for a non-linear optimisation algorithm to improve the objective function. As

the objective function is a sum of reprojection error over all observations, each itera-

tion takes into account all of the data in order to adjust the parameters. In this work,

the authors advocate optimising the camera and scene parameters independently at

each iteration (keeping the others fixed). This means much lower dimensional linear
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equations are solved at each iteration, making each update much more efficient. The

authors claim that this approach does not require significantly more iterations before

convergence. The iterative algorithm is shown to deliver better results than an EKF, as

it relinearises at each iteration around a better estimate.

Szeliski & Kang (1993) describe a general framework for metric SFM in three dimen-

sions with a full-freedom calibrated perspective-projection camera. The authors argue

for a reformulation of perspective projection with object-centred coordinate system,

as used by Tomasi & Kanade (1991), so that estimation is well-conditioned even as

the scene depth shrinks relative to viewing distance. As described by Taylor et al

(1991), an iterative non-linear least squares optimisation is applied to all of the obser-

vations (point tracks or line correspondences) in order to minimise the reprojection

error. The Levenberg-Marquardt algorithm is used for the optimisation, so each iter-

ation requires solving the full dimensional linear equation. The method shows rapid

convergence even when the initialisation is poor or trivial. A robust fitting with outlier

detection is achieved by gating and reweighting the observations after convergence,

and then iterating again.

McLauchlan & Murray (1995) show that this common Levenberg-Marquardt global

optimisation framework, a particular case of bundle adjustment, can be manipulated so

that each iteration takes cubic time in the smaller of number of landmarks or number

of poses. Either motion or structure can be factored out of the main linear equation

using Gaussian elimination, so that the dimensionality is reduced to only the structure

or motion parameters, respectively. Then the factored-out parameters can be readily

recovered after solving the linear equation for the other parameters. The comprehen-

sive review by Triggs et al (2000) explains this process in detail. Thus the per-iteration

run-time of bundle adjustment using Levenberg-Marquardt with N landmarks and M

poses is O(min{N3 + M,N + M3}).

Pollefeys et al (1998) extend this bundle adjustment framework to allow the intrinsic

camera parameters to vary over the course of the sequence. First a projective recov-

ery is performed on the sequence, which does not depend on knowing the intrinsic
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parameters, and then the camera parameters are recovered from the projective recon-

struction using the absolute conic. Faugeras (1995) describes the absolute conic, a

projective “circle” invariant to affine transformations that permits recovery of intrin-

sic parameters. Using these intrinsic parameters (possibly different for each pose),

Pollefeys et al (1998) upgrade the projective reconstruction to a metric one, aiding

a search for dense correspondences between pairs of images. The dense points are

triangulated to yield a surface approximation of the scene, with textured faces. The

stability and accuracy of the calibration step is greatly improved by fixing some intrin-

sic parameters to be static throughout the sequence. In typical cases the aspect ratio is

a known constant, and there is zero skew. In contrast, focal length changes with zoom

and focus during a sequence.

Fitzgibbon & Zisserman (1998) present a robust and efficient method for perform-

ing calibration and reconstruction from possibly closed image sequences (where the

poses form a loop). The approach is hierarchical, in that subsequences of increas-

ing size are processed and registered together until the whole sequence is recovered.

First, the trifocal tensor (Hartley & Zisserman (2004)) is recovered for each contiguous

image triplet. Combining these triplets into subsequences yields a projective piece-

wise reconstruction, and then the subsequences are all registered into the same frame.

Camera parameters and Euclidean structure are recovered by bundle adjustment in

the global frame.

Taking the outlier detection strategy of Szeliski & Kang (1993) one step further, Torr

et al (1998) fold multiple frame-to-frame correspondence hypotheses into the opti-

misation, allowing the rigidity constraint to select the best matches. The paper also

presents a robust method for detecting degenerate motions in the case of uncalibrated

cameras. As in Tomasi & Kanade (1991), the availability of all observations in the

optimisation permits local motion degeneracy that is resolved by global rigidity con-

straints.

An excellent review and exposition of bundle adjustment methods, trade-offs, and

implementation details is found in Triggs et al (2000).
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2.2.2 Recursive SFM

While the bundle adjustment methods described above aim for optimal recovery of

structure and motion from a sequence, they also require that the entire sequence be

available for processing. This precludes online recovery, and the computational ex-

pense of the iterative optimisation is often undesirable or infeasible for applications

where sequences do not have predetermined extent. Thus causal and recursive meth-

ods, which efficiently produce structure and motion estimates given data only up to

the current time, have been developed in tandem with the batch optimisation ap-

proaches. As online structure and motion recovery algorithms, these are natural pre-

cursors to SLAM using vision.

A crucial property common to all of the recursive SFM methods described in this sec-

tion is that world features, once they have been occluded or out of view for some fixed

number of frames, are not re-observed at any later time. Thus returning to the same

actual pose will not necessarily yield the same estimated pose, because differential

pose error accumulates over the course of the sequence. It is this odometric property

that distinguishes these algorithms from the vision-based SLAM algorithms discussed

later..

The seminal work of Broida et al (1990) presents and evaluates a recursive system for

estimating the structure and motion of a rigid object. The object is assumed to move

with constant rotational and translational velocity throughout the available sequence,

but all other parameters are estimated from feature-matching observations. The esti-

mation is boot-strapped by an initial batch process over the beginning of the sequence,

to give a non-degenerate structure estimate. Then the estimate is maintained and up-

dated recursively with an iterated EKF (an EKF that performs multiple iterations on

each update to find the optimal point of linearisation). The system generally shows

reasonable and convergent results for simulated and real input. Though the output

consists of the state of a moving object with respect to a fixed camera, the information

could be trivially manipulated to yield pose estimates for a moving camera and the

structure parameters of a fixed object. The authors note that an observation model
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with large noise – even when the uncertainty of the observations is correctly modeled

– will lead to a divergent filter due to linearisation error.

Azarbayejani & Pentland (1995) provide an excellent treatment of structure and mo-

tion recovery in a recursive framework, also taking into account unknown (but static)

focal length. An iterated EKF serves as the filter. In contrast to most other represen-

tations of 3D points, this work argues for a single parameter estimated in the filter

per point, which encodes the depth of the point along a fixed ray direction in the

first frame. The justification for this reduced parameterisation is that the uncertainty

of point location is so small within the image plane (on the pixel level) that it need

not be modeled by the filter. The authors show that explicitly including these two

additional state dimensions for each point is equivalent to tracking the bias of the ob-

servation model. Experiments with low-error matches support the claim that the bias

is a second-order effect, and thus need not be estimated by the filter. Importantly, this

representation is well-defined only when the reference pose for the ray direction is

known. If features are acquired during the course of the sequence, the parameters of

the acquiring camera must be estimated for all subsequent time in the filter. Using the

reduced representation yields a factor of three compression of the filter state, which

gives a factor 27 reduction in runtime (as each update is cubic the state dimension).

Instead of modelling focal length, the system estimates an analogue, β of inverse fo-

cal length. When β tends to zero, the represented focal length increases, until in the

limit, β = 0 perfectly encodes the case of orthographic projection. The relationship

between focal length and translation along the depth axis is strong, so translation in

this direction is estimated indirectly as a function of focal length.

The one-parameter representation of Azarbayejani & Pentland (1995), however, is

reexamined by McLauchlan & Murray (1995) and Chiuso et al (2002). Both papers

find that privileging the first observation by ignoring its angular uncertainty leads to

bias that, at best, keeps the map from converging, and at worst, causes catastrophic

error.

Another example of recursive SFM using the EKF and point feature tracks is given

by Bouguet & Perona (1995). This is essentially a sliding-window method, where the
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EKF maintains a representation of the state older than the back of the window. In

contrast to the batch approaches, all poses and observations older than the window

are not relinearised around updated estimates, so linearisation errors affect the result,

which is necessarily suboptimal. Motion estimates for the camera are integrated from

frame to frame using optical flow.

McLauchlan & Murray (1995) present a generalised recursive formulation of SFM

motivated by the typical batch approach. The variable state dimension filter (VSDF)

allows features to be added and removed from the state (maintained by an EKF) in a

principled way as the sequence progresses. This process corresponds to marginalisa-

tion of subsets of the estimated state, and in the EKF framework, it happily reduces

to deletion and insertion of state elements, rows, and columns from the mean vector

and covariance matrix. Further, heterogeneous state is straightforward to represent;

the paper shows results for points and lines. The system is boostrapped from a batch

recovery over a starting subsequence. The authors emphasise that the resulting filter

is suboptimal for nonlinear models (relative to an iterative batch approach), as is true

for all of the recursive SFM methods.

Taking the work of Azarbayejani & Pentland (1995) as a starting point, Chiuso et al

(2002) formalise the mathematical and geometrical framework of recursive structure

from motion. The work includes an analysis of the minimality and observability of

typical models for the process. In particular, the single-parameter representation of

landmarks used by Azarbayejani & Pentland (1995) is shown to be sub-minimal, in

that it unfairly weights initial observations more than subsequent ones. Though not

the focus of this paper, the use of the exponential map to perform optimal estimate up-

dates on the manifold of rigid motions is included in the formulation. As with earlier

approaches, the operation of the system is split into transient and steady-state stages,

the first of which involves initialisation of features/landmarks. However, departing

from the earlier work, this initialisation does not rely on batch methods, but instead

uses a separate “sub-filter” EKF per new feature. After a probationary period, the es-

timate of the sub-filter is added to the main EKF. This method ignores the correlations

induced between existing structure estimates and the new landmark through the cam-

era pose. New features are chosen in order to uniformly populate the image plane, and
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selected from images using an SSD brightness-gradient measure. No details are given

of the feature-tracking method used to obtain subsequent observations. The results

for favourable scenes with sufficient features visible and slow, smooth motion show

accurate reconstruction for short sequences and decent motion estimates. However,

when features are occluded they are removed from the filter, so drift will accumulate

over time.

Jin et al (2003) takes the formalisation of Chiuso et al (2002) further, extending the

representation of the scene to planar patches with orientation. By estimating in the

EKF the surface normals associated with each patch, the appearance model for the

patches is richer. Affine lighting variation is accounted for by normalising the vari-

ance of the patches. An important innovation of the work concerns its approach to

landmarks which were occluded but have since reappeared. They are reobserved,

and their structure estimate is updated to reflect the newer estimate. However, be-

cause old landmarks are removed from the filter, other landmarks in the map are not

updated. Feature tracking proceeds by projecting estimates of the patches into the im-

age and searching for the patch in a fixed radius of the predicted location. This is a

crude example of active search, discussed in more detail below.

In contrast to the EKF used by the above systems, Nistér et al (2004) perform sliding-

window bundle adjustment over a video sequence to recover camera motion, with

a calibrated monocular or stereo rig. Each portion of the algorithm is carefully op-

timised for robustness and efficiency. Harris features (Harris & Stephen (1988)) are

matched across frames with a fixed maximum disparity limit, and outliers are rejected

using the five-point algorithm and preemptive RANSAC (Nistér (2003)). Point posi-

tions are triangulated from the resulting feature tracks, using the earliest and latest

observations as an approximation of the widest available baseline. Then scale across

triples of frames is robustly recovered using the three-point algorithm (Fischler &

Bolles (1981)). Finally, bundle adjustment over the structure and motion parameters

of the most recent three frames yields a locally optimal estimate. In order to avoid

propagating structure errors through the differential motion estimation, “firewalls”

are placed at fixed time intervals, isolating all feature observations before the firewalls
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from those after. This serves to reset the structure estimation. Results from real se-

quences are impressive, yielding accurate motion recovery through long sequences

compared to onboard GPS taken as ground truth. The system runs in real time at a

frame rate of ∼15 Hz. Despite the high differential accuracy, however, drift still accu-

mulates, and the system does not correctly estimate the return of the vehicle to the be-

ginning of a sequence. Again, unless old landmarks are remembered and reobserved

later, drift in SFM will be inevitable with noisy sensors.

2.2.3 SLAM with Vision

In contrast to the recursive SFM methods described above, the work in this section

aims to maintain a more permanent representation of structure, and remembers “old”

structure upon a return to a previously visited portion of the environment. These ap-

proaches thus either implicitly resemble, or explicitly attempt, solutions to the SLAM

problem with vision as the primary sensor.

Harris & Pike (1988) show an early attempt at recursive SFM without drift, lacking the

insights about correlation and uncertainty espoused by Smith & Cheeseman (1988)

and Moutarlier & Chatila (1990). Landmarks, chosen from feature points (from an

unspecified detector), are represented in separate EKFs, as though they are statisti-

cally independent of each other. The uncertainty in the camera pose is not maintained

by the system. Because correlations are ignored, the system cannot converge to the

correct map (though the results show decent performance on short simple sequences).

However, the implementation exhibits two important properties. Firstly, the parame-

terisation of the landmarks is chosen to allow better representation within the filter, by

employing “disparity” coordinates. These are coordinates defined with respect to the

location of the feature in an image, along with the inverse depth of the landmark along

the viewing direction of the camera. Because the parameters are simply related to im-

age properties, they make use of the EKF feasible for representing highly uncertain

landmark estimates. Secondly, this paper presents one of the first clear explanations

of active search (albeit without taking into account camera uncertainty). Active search

comprises the use of current state estimates to direct a search for further observations
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of the state, either within the current image or by actively moving the sensor. In this

case, the state, including the current pose estimate, permits the prediction, through the

observation model, of where each landmarks will appear in the current image. The un-

certain estimate for each landmark is projected into the image using the perspective

projection model and camera parameters, and gated to yield an ellipse inside which

the landmark should appear with a chosen confidence. The image region inside the

ellipse is then searched for the landmark using its appearance model (an image patch).

Though Rahimi et al (2001) attack the problem of drift within a differential track-

ing setting, the approach highlights the crucial difference between recursive SFM and

vision SLAM. In a differential tracking system, the pose of a tracked object (static cam-

era) or camera (static world) is estimated by making only differential measurements

from frame to frame. Integrating these changes over time yields a pose estimate, but

the estimate suffers from unbounded drift. This paper presents a method for using

past frames to get temporally non-local differential measurements. When the pose

or state is sufficiently close to a previously saved state (a subset of all frames is pre-

served), tracking occurs not only between the most recent two frames, but also be-

tween the newest frame and the nearby past frame. By combining these differential

measurements, the estimate of current pose or state is modified to satisfy both old and

new observations, and drift is bounded. Intuitively, when seeing the same image, the

system will report the same state. Examples and results, showing bounded error over

time, are presented for head tracking and camera egomotion estimation.

Neira et al (1997) present one of the first direct applications of vision within the canon-

ical stochastic map regime of Smith & Cheeseman (1988) and Moutarlier & Chatila

(1990). A robot with odometric sensors is also equipped with a camera. From the

video, vertical edges are extracted and tracked, and represented as 2D points in the

plane of the robot’s motion. A variant of the EKF filters the whole state with full

covariance, so observations of the vertical edges greatly reduce the orientational un-

certainty of the robot. Thus closed trajectories are navigated without drift. The paper

brings up the important issue of data association – the procedure by which sensor ob-

servations are associated with landmarks in the state. The authors note that a differ-

ent approach than that used for range-finder SLAM is appropriate when using vision,
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and that “tracking” the edges by predicting their location from the filter greatly eases

the problem. This common strategy – first predicting landmark locations in the im-

age, then associating observations with the most likely landmark – is similar to active

search, but in this case does not focus the image search using the prediction. Edges

are extracted from the image in a bottom-up fashion before the data association pro-

cess begins. The system gives reasonable results with ∼20 vertical edge landmarks

combined with the robot’s odometry in a closed trajectory.

The system of Se et al (2001), implemented on a robot with a trinocular rig, takes a dif-

ferent approach to data association with vision. SIFT features (Lowe (2004)) extracted

at each time-step are matched to landmarks whose estimated projection is nearby in

the image. Matches are confirmed using the orientation and scale associated with

each SIFT feature. The estimation framework is quite similar to that of Harris & Pike

(1988), in that each landmark’s estimate is treated as independent from all others, and

maintained in a separate EKF, ignoring the correlations required for consistency. In

this system, however, camera uncertainty is estimated and propagated to newly ini-

tialised landmarks. The combination of trinocular rig and good odometry results in

usable maps, though no quantitative results are given for structure or motion recov-

ery. The distinctive nature of SIFT descriptors permits global localisation within the

system, addressing the kidnapped robot problem.

The robot SLAM system described by Davison & Murray (1998), Davison & Kita

(2001), and Davison & Murray (2002), and presented in detail in Davison (1998), suc-

cessfully employs vision as the primary sensor, and provides an excellent reference

baseline for the implementation of stochastic-map EKF SLAM using active search.

A stereo rig is mounted on a pan-tilt head, and the only other input to the estima-

tion is from odometry. Three-dimensional point landmarks are maintained in a full-

covariance EKF, along with the robot pose. At each time step, the estimates of land-

marks that lie within the current viewing volume are projected into the image plane,

along with a gated search ellipse, taking into account landmark and pose uncertainty.

Then the landmark whose image uncertainty (innovation covariance) is largest by vol-

ume is sought within its region, as observing it will (roughly) yield the most infor-

mation to the filter. This notion is formalised and improved by Davison (2005). The



2.2 Localisation and Mapping with Vision 24

ellipse is searched using normalised sum-of-squared-differences for a small patch rep-

resenting the landmark, providing invariance to affine lighting changes. Each of the

two stereo frames is searched separately, and the results are discarded if they disagree

with the known epipolar geometry of the rig.

The map built by the system is purposely sparse: it is used primarily for localisa-

tion, so it need not represent dense detail, and the quadratic time and storage cost of

the EKF makes maps with many landmarks computationally prohibitive. Because the

map is carefully constructed, despite its sparseness it allows accurate and repeatable

localisation over small environments. Further, it can be harnessed for basic navigation

and obstacle avoidance tasks, as shown in the results. The system also exhibits an

important and perhaps surprisingly successful approach to map management. Even

though the constraints on landmarks (that they be locally planar, static, and well-

represented by their image patch) cannot be confirmed immediately, landmarks that

pass the most basic tests are added to the filter, and discarded when they fail to be

observed sufficiently often. The model is assumed to hold, and the landmarks are

rejected when the assumption proves spurious; this technique is employed by many

subsequent SLAM systems. Landmark acquisition, with sparseness in mind, is trig-

gered only when necessary to ensure a minimum density of landmarks in the vicinity.

The detector of Shi & Tomasi (1994) is employed to select new features, and the stereo

rig provides a non-degenerate initial estimate of position for adding the new landmark

to the stochastic map.

Jung & Lacroix (2003) describe a SLAM implementation with low altitude stereo im-

agery as the sole sensor. The visual processing relies on robust Harris feature point

matching, both within a stereo pair and across images captured at different times.

The resulting matches are partitioned, some to be used as landmark observations, and

some to be used for frame-to-frame egomotion estimation. The egomotion estimation

is used in the prediction step of the EKF just as other odometry would be. By splitting

up the observations, the system avoids using information more than once, and thus

keeps the filter prediction step independent of the update step. When old landmarks

come into view, they are reobserved, decreasing the error of both the map and the
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localisation. In the results shown, the visual motion estimation by itself is quite accu-

rate over the length of the sequences; adding SLAM on top of it slightly improves the

results. Note that the scenario does not require frame-rate operation (as the aerial plat-

form is stable and slow-moving), so filter updates occur less than once a second, and

the visual motion estimation step can be more computationally intensive than would

be possible in a more time-constrained system.

Using Davison & Murray (2002) as a basis, Davison (2003) develops a real-time SLAM

algorithm for a single hand-held camera. While much of the machinery and approach

carries over, SLAM with a monocular sensor without odometry is much more chal-

lenging than with a robot equipped with a stereo head. This work presents the first

real-time implementation of SLAM with only a single camera, and provides a good

point of reference for the work of this thesis. As with the methods discussed above,

the EKF provides the statistical machinery for estimation. Davison represents the cur-

rent camera pose with a quaternion and a translation vector, along with velocity terms

in each. Imposing a constant velocity model on the pose dynamics greatly increases

the stability of the system, and make active search feasible.

Run-time operation begins by observing a fiducial configuration with known geome-

try, thus fixing the coordinate frame and scale of the map, and providing good enough

pose estimates to begin adding new landmarks. Landmarks are occasionally chosen

from small windows of the image where no existing landmark estimates project, in or-

der to maintain a minimum workable density of landmarks, well distributed in the en-

vironment. As in Davison & Murray (2002), Shi-Tomasi features are detected in these

windows for choosing new landmarks. One of the particular difficulties of monoc-

ular SLAM now rears its head: from just one observation of a feature with a single

camera, the landmark estimate is unconstrained in depth. The problem of how this

degenerate estimate should be represented and improved in the filter is called initiali-

sation, and several approaches have been described above for recursive structure from

motion algorithms. Davison first adds a ray estimate to the EKF corresponding to the

single observation of the landmark. As mentioned above, the depth distribution is

not initially Gaussian, so a different representation must be chosen if depth is to be

estimated incrementally. Davison maintains a separate particle filter along the ray for
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estimating the depth of each new landmark. Particles begin uniformly spaced over a

fixed depth interval (0.5m to 5m in this work). As a new landmark is repeatedly ob-

served, its depth particles are reweighted and resampled, until they converge enough

that they can be accurately represented as a Gaussian. Then the appropriate Gaussian

transformed to world coordinates and added to the filter, replacing the ray, and the

landmark is fully initialised. We discuss other approaches to initialisation later in this

thesis.

For the same reasons espoused by Davison & Murray (2002), Davison argues that the

map should be as sparse as possible while still supporting localisation, as the pose

estimate is the real output of the system. On the test hardware, the system can operate

at 30 Hz with up to 100 landmarks before the EKF update cost is too high. Again,

innovation covariance is used to prioritise which landmarks to observe. The results

show that the reconstruction and localisation is reasonably accurate for small scenes.

Importantly, the active search method allows the system to close small loops success-

fully.

Molton et al (2004) extend the appearance model used in the system of Davison (2003)

to include patch normals for landmarks. The primary goal is not to enrich the map

representation, but rather to increase the range of motion over which active search

for a given landmark is successful. Normals are maintained outside of the main EKF,

and updated using inverse compositional techniques and gradient descent, every time

landmarks are observed. With an estimate of patch normals, full projective warping

can be applied to patches before active search, better approximating the actual ap-

pearance of the patch in the image. For scenes with many textured planar areas, the

patch-normal estimation process works reliably, and significantly broadens the view

change over which a given landmark can be observed. The authors are careful to em-

phasise that a poorly-constrained normal estimate reflects a patch with insufficient

texture to distinguish within a range of normal directions, so that a poor estimate of

the normal will not affect the ability of the system to observe the landmark.
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2.3 Limitations of EKF SLAM

While the EKF machinery offers a straightforward method of maintaining a stochastic

map, it has significant limitations. The quadratic cost of updates and storage is the

most immediate problem, harshly constraining the number of landmarks in the map

if efficient operation is required. However, even with small maps, nonlinear process

and observation models can lead to divergence of the filter. There has been extensive

work in the SLAM literature addressing these problems; we review some of the key

results here.

2.3.1 Computational Scaling

Because the EKF maintains a full covariance matrix for the state estimate, which has

dimension O(N) for N landmarks, the storage cost is O(N2). Further, due to the

complete correlation to which the stochastic map tends, an update to any part of the

state will decrease uncertainty in all other parts of the state. Each update thus modifies

every element of the covariance, with a computation cost of O(N2). Mapping with

hundreds or thousands of landmarks then becomes infeasible for realistic hardware

or time constraints.

2.3.1.1 Map Minimisation

The problem can be rather directly avoided by limiting the size of the map. Dis-

sanayake et al (2000) show that landmarks can be deleted from the state vector with-

out compromising the consistency of the estimate. By enforcing a maximum spatial

density of landmarks, discarding all but one representative within a region of the map,

the cost of updates is greatly reduced while the accuracy of localisation is not signifi-

cantly degraded. Further, by selecting which landmarks in a region to keep or discard

according to their information content, the degradation in accuracy can be minimised.
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Davison, both in his work with active stereo vision (Davison & Murray (2002)) and

with a hand-held camera (Davison (2003)) emphasises the importance of maintaining

a sparse map when using the EKF for localisation. By careful selection of landmarks

and observation scheduling, maximal localisation performance can be squeezed out

of a relatively small set of landmarks in an area.

2.3.1.2 Relative Representations

Csorba (1997) presents a relative landmark formulation, where instead of estimating

landmark locations in a global frame, the filter estimates the relative transformations

between pairs of landmarks. Information about the transformation between land-

marks A and B can be gleaned from an sensor observation that includes both A and

B. The representation requires O(N2) state elements, but with the advantage that es-

timates for distinct relations are independent of each other. Thus a block-diagonal

covariance is not an approximation, and the update cost is O(1) per observation. The

downside of the representation is that there is no simple access to location and uncer-

tainty of landmarks or robot in a global frame, so that localisation is expressed relative

to landmarks. Further, the relative transformations need not be coherent, so that one

transformation into a common frame (by composing landmarks relationships) can dif-

fer from another. The thesis emphasises that robot pose uncertainty in the global frame

increases with distance from the global origin, as do landmark location uncertainties.

However, due to the covariance between the two, the uncertainty in robot-landmark

relationships is independent of the global frame. This property is encoded explicitly

by the relative location filter.

The Geometric Projection Filter (GPF) (Newman (1999), Newman & Durrant-Whyte

(2001)) combines a relative map with a constraint application algorithm in order to

arrive at a coherent estimate of landmark locations. Each cycle in the network of rel-

ative transformations should compose to the identity transformation, so each cycle

provides a constraint on the relations involved. Application of a set of NC constraints

requires O(N3
C) computation, so special attention is paid to minimising the number of
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constraints involved. Results are shown for synthetic landmarks observed by a sub-

mersible vehicle equipped with sonar. The GPF delivers relative landmark distances

that are similar to those provided by the standard EKF formulation, while decoupling

the map and vehicle estimates.

2.3.1.3 Update Amortisation

In common SLAM scenarios, landmarks from a small, local subset of the whole map

are observed often in a short period of time, before the robot moves on to other parts

of the environment. In these cases, the quadratic cost of updating the whole state with

each observation is mostly wasted, as only a small part of the state will be needed

anytime soon. Two algorithms, mostly equivalent but developed in parallel, address

this burden by reformulating the EKF machinery without affecting the mathematical

result.

The postponement algorithm of Knight et al (2001) maintains a working set of land-

marks, which are fully updated with respect to one another upon observation. The

earlier incarnation of the work by Davison (1998) assumes the working set contains

exactly one landmark, which will be repeatedly and exclusively observed, but the

method generalises to arbitrary subsets. Observing landmarks in the working set al-

ways updates their inter-covariances and state fully (along with the vehicle state),

while updates to the rest of the map state are delayed. Landmarks can be incremen-

tally added to the working set, whether they be existing in the map or newly ini-

tialised, until the working set grows to a bounded size. Then the full map state is

updated using data maintained during the processing of the working set. This global

update has full quadratic cost in the size of the map, but it also yields the same result

as if the whole state had been updated at each step. Further, this expensive step can

be computed in parallel while building and observing a new working set. The update

for the working set is quadratic only in the size of the working set.

The Compressed EKF (Guivant & Nebot (2001), Guivant (2002)) is a reformulation

of the EKF similar to that of postponement. The difference is that the working set is
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determined not adaptively by what the robot is observing, but instead a priori by a ge-

ometric partitioning of the environment. A simple rectangular grid is suggested, with

hysteresis at the boundaries so that nearby landmarks, which might in reality belong

to the local set, are still observed. The runtime costs are the same as for postpone-

ment: local update cost quadratic in the size of the working set and global update cost

quadratic in the size of the whole map.

2.3.2 Consistency

Even when the map is small enough that the EKF is not limited by computation de-

mands, the estimation process can still yield inconsistent results. In general, a consis-

tent filter is one that, given unlimited observations, converges to the correct estimate

of state. More intuitively, though a consistent filter might, during operation, have an

inaccurate estimate of the mean of the state distribution, given many more observa-

tions, the estimate should converge to the truth. This convergence requires a correct

handling of uncertainty by the filter. In particular, the estimation process must not

be overconfident in its knowledge of the state. The estimated uncertainty must never

drop below the true uncertainty bound imposed by fusing uncertain observations.

With non-linear observation and dynamics model, the EKF is prone to exactly this

sort of overconfidence.

Julier & Uhlmann (2001) give a clear mathematical and empirical example of the in-

consistency and subsequent divergence of the EKF even in the most basic scenarios.

The paper considers a filter estimating the state of a vehicle and exactly one landmark

in the two-dimensional plane, observed with a typical range-bearing model. The esti-

mate of vehicle state, theoretically, should never be more certain than it is at the first

time step, as no observation of the landmark can reduce the global registration uncer-

tainty of the map or vehicle. However, in the example, the orientation uncertainty of

the static vehicle state quickly drops below its original level after only a few observa-

tions. The decreased vehicle uncertainty feeds back into estimation of the landmark,

resulting in an inconsistent map and vehicle estimate. The culprit is shown to be the



2.3 Limitations of EKF SLAM 31

dependence of the observation Jacobian on both the noisy observations and the rela-

tive configuration of the vehicle and the landmark. Because the model is nonlinear,

even if the true state is used as the linearisation point, the Jacobians change as the

vehicle moves, and the mathematical conditions necessary for a consistent EKF are

violated. The result implies that the EKF is not capable of providing long-term consis-

tent estimation in the general SLAM case.

Castellanos et al (2004) recognise the same problem with the EKF, confirming it by

simulated experiments. The paper suggests always keeping the map estimate in the

local frame of the robot, which greatly reduces the linearisation discrepancies, result-

ing in extended consistent operation. However, even with this modification the filter

eventually becomes inconsistent. More details of using a robot-local coordinate frame

in the EKF framework, as well as incorporating it with a postponement/compressed

EKF local-to-global update strategy, are given by Castellanos et al (2007).

Bailey et al (2006a) examine the causes of the inconsistency in more detail, showing

that the source of the problem in the case of two-dimensional SLAM is vehicle heading

uncertainty. As soon as the heading becomes sufficiently uncertain, the landmark

estimates show spurious information gain. Filtering with Jacobians taken around the

current estimate quickly leads to inconsistency, while using Jacobians taken around

the ground-truth state generally avoids the problem. Of course, ground-truth state is

not available to a SLAM algorithm. The authors conclude that in order to minimise

inconsistency with the EKF, the system must take periodic absolute measurements of

orientation (to bound heading uncertainty), or always represent estimates in the local

frame of the robot, so that heading uncertainty is minimised. This second technique is

a natural consequence of the submapping formulations described below.

Another important contribution of Bailey et al (2006a) is the realisation that consis-

tency of a filter can only be evaluated over many runs with observations sampled

from their noise distributions independently each time. The average normal estimation

error squared (NEES) over these runs then provides good input for a chi-squared con-

fidence test of consistency for all or part of the state. A single run determines nothing,
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as an inconsistent filter can appear consistent for certain sampled observations and

vice versa. We employ the NEES method for testing consistency later in this thesis.

The more recent work of Julier & Uhlmann (2007) argues that consistent estimation is

essentially impossible in the EKF SLAM framework, and proposes a different informa-

tion fusion algorithm that is guaranteed to be conservative. The algorithm employs

covariance intersection (Julier & Uhlmann (1997b)) as the primary statistical machin-

ery. Covariance intersection conservatively combines two Gaussian observations of

the same state with unknown correlation, always producing a result that is consistent

regardless of what the correlation might be. A simple application of covariance in-

tersection to SLAM ignores all correlations between vehicle and landmark states, and

fuses all observations into the state estimate conservatively. A benefit of this formu-

lation is that the storage and update costs of the filter are vastly reduced, allowing

SLAM with an arbitrarily large map in bounded update time. However, the map is

highly over-conservative, and does not necessarily converge to the true solution. The

authors instead suggest a hybrid approach that leverages some certain knowledge of

correlation, such as the independence of process noise from one time step to the next,

and the independence of observations from each other. Covariance intersection is

used for all other operations. This framework still yields very conservative estimates,

but better than those of covariance intersection alone. Further, covariance intersection

can be used to combine the output of multiple heterogenous SLAM algorithms in a

consistent manner, potentially yielding highly robust operation.

2.3.3 Submapping Strategies

The computational demands and consistency concerns of EKF SLAM lead naturally

to the development of divide-and-conquer techniques for estimation on large maps.

These approaches, which generally decompose the global map into many local maps

of bounded complexity. For this reason we refer to them here as submapping strate-

gies.



2.3 Limitations of EKF SLAM 33

Chong & Kleeman (1999) build a collection of local maps to avoid the computational

limit of the EKF. When the uncertainty of robot pose grows beyond a bound, indicat-

ing that the correlation to landmarks near the origin of the current map is weak, the

robot saves the current map and starts creating a new map, recording the topological

connection of the two. Pose coordinates are always represented in the global frame,

and a list of poses that robot has assumed is stored with each map. In order to detect

when the robot re-enters an existing map, the current pose estimate is compared to

all poses associated with topologically nearby maps. When a sufficiently close pose

match is found, the hypothetical map is loaded and a map matching algorithm is per-

formed. Map matching attempts to associate the latest observations with elements

of an existing map, and when successful, yields the pose of the robot relative to the

map. Thus the system can detect map re-entry and initialise the pose appropriately

within the existing map. Because the size of local maps is bounded, computation is

also bounded. Only one map is ever updated in a time step.

Leonard & Feder (2001) introduce a submapping strategy called decoupled stochas-

tic mapping (DSM). Submap regions have pre-determined geometric bounds in the

global coordinate space. In this paper, the space is split into a cartesian grid with some

overlap.If the density of landmarks in space is bounded, then bounded region volume

implies a bounded number of landmarks in each region, and thus bounded compu-

tation for region-local maps. All local maps are globally registered. When the robot

leaves a region, it creates a new map if none exists in the new region, or it must tran-

sition into an existing map for the destination region. Two transition algorithms are

described: cross-map relocation and cross-map updating. In the relocation case, the

uncertainty of the vehicle pose estimate in the source submap is added to that in the

destination submap, and the current pose estimate from the source submap is taken

as the mean for the destination. This is consistent only if the cross-correlation between

vehicle and landmarks has not changed in the destination submap since the last time

it was updated. For cross-map updating, the destination covariance for vehicle and

landmarks is artificially inflated, the destination pose mean is “randomised”, and the

pose estimate from the source submap is fused with the destination as an observation

of pose, using the EKF. In this case, the resulting vehicle pose uncertainty in the desti-

nation is reduced, but the landmark uncertainty is increased. No mathematical proof
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of consistency can be given for these approaches, especially with nonlinear models.

The results shows that the consistency of the method depends on the trajectory of the

robot in an unexplained manner.

Leonard & Newman (2003) improve the DSM formulation by more rigorously defin-

ing the inter-map transition algorithm, and by using local coordinate frames within

each local map. Each submap’s frame is tied to a root landmark in the region, whose

position is defined as the origin of the local map. The global location for the root is

found by composing the transformations between map roots of any local maps be-

tween the map in question and the first map, which defines the global origin. Land-

marks in a local map can be globally registered with reference to their root. The

global submap location estimates can be improved whenever the robot moves from

one submap to another. Landmarks shared between the adjacent submaps are exam-

ined, and if the relation between any shared landmarks better constrains the transi-

tion than the existing global root position estimate, the map is “re-rooted” around

the shared landmark, and the global position estimate is updated. When a local map

becomes fully internally correlated, no re-rooting will improve the global position es-

timate. Only simulation results are shown in the paper; data association is assumed

to be known and the observation and dynamic models are linear. For the simulated

data, the technique appears to be consistent.

Williams (2001) also describes a mapping algorithm – the “constrained relative submap

filter” (CRSF) – that builds local maps, each with its own coordinate frame. However,

the map boundaries are not determined a priori, but a new map is created when the

robot pose uncertainty becomes large relative to the current coordinate system. The

map-to-map transformation estimates form a tree structure, through which local esti-

mates can be propagated to give global estimates. Revisitation of old maps is detected

during the data association process, through a feature matching algorithm which at-

tempts to find the best joint compatibility between sets of features extracted from laser

scans. Few details are given for how this matching operates against many indepen-

dent local submaps. Assuming revisitation is detected, the robot’s pose can be repre-

sented relative to the existing coordinate frame, and mapping continues there. Though
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the tree of map-to-map transformations is sufficient to allow traversal between the co-

ordinate systems, it does not guarantee global convergence of the map. Least-squares

optimisation can be applied to the whole set of submaps, effectively enforcing global

constraints, but few details of this optimisation are shown.

Bailey (2002) presents a flexible formulation of local maps joined by coupling esti-

mates, called “network coupled feature maps” (NCFM). NCFM consists of local maps

with local coordinate systems, estimated with the EKF machinery, joined by uncertain

coordinate transformations, yielding a graph of local frames. The coupling estimates

between the submaps are constrained both by the initial motion estimates, when one

submap is created at the boundary of an existing one, and by common landmarks esti-

mated in the two incident maps. This latter constraint allows the coupling uncertainty

to shrink as the local maps converge, so that the whole configuration of submaps con-

verges globally over time. Traversal of the map during estimation is driven by the data

association algorithm, which uses either joint compatibility tests or subgraph match-

ing of feature observations. When the robot is near the boundary of the current map,

an attempt is made to associate each observation set with nearby maps. When this

association is successful, and the robot uncertainty relative to the current map is high,

a transition occurs, and the robot is represented within the other local map.

The NCFM permits efficient loop closure detection with a two-pass algorithm. In the

first pass, potentially visible local maps which are not adjacent to the current map

are identified by composing the coupling estimates through the graph. This regis-

ters distant submaps with respect to the current map. Sufficiently proximate submaps

then pass to the second stage, where a map matching algorithm, or data association

with the latest observation set, yields correspondences between portions of the two

maps, or the observations and the distant map, respectively. Then the coupling es-

timate between the now-joined local maps is updated using any common landmark

estimates. Because common landmarks are used to constrain inter-map coupling esti-

mates, the estimates are statistically correlated with other coupling estimates incident

to the endpoint local maps. However, the author argues intuitively and empirically

that ignoring these correlations actually results in conservative (but still consistent)

coupling estimates rather than optimistic ones.
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Bosse et al (2004) describe a framework for graph-based scalable SLAM called Atlas,

developed independently from NCFM but nearly simultaneously. The Atlas frame-

work also maintains a set of local map estimates with local coordinate frames, joined

by transformation estimates, as in NCFM. However, the local map estimates of At-

las can be processed with heterogeneous filtering approaches, not only the EKF. At

each time step, only constant computation is required beyond the local map update.

Because local maps have bounded size, operation in general thus requires only con-

stant time. The map-to-map transformation estimates in Atlas are constrained only by

the vehicle pose estimates at the boundaries between two maps. Map traversal with

Atlas is more sophisticated than in NCFM: when the estimated pose near other con-

nected local maps, a new hypothesis for pose relative to the other map is spawned.

This hypothesis is updated along with the current mature hypothesis, which keeps

the robot in the current map. Multiple new hypotheses (called juvenile hypotheses)

might exist simultaneously with the current mature hypothesis. Juvenile hypotheses

do not update their local maps, but instead maintain a quality estimate reflecting the

success of data association with each new set of observations. When the quality of

a hypothesis exceeds all others including the current mature hypothesis, it becomes

the dominant hypothesis. This multiple-hypothesis traversal mechanism makes Atlas

robust to environments with repeated or ambiguous structure.

In order to transform pose or landmark estimates from one local map to another, or

to register all map estimates with a common global frame, a path must be chosen

through the graph of submaps. The Dijkstra shortest-path tree from the current map

is maintained incrementally for this purpose. The metric by which the tree is built

reflects the uncertainty of each map-to-map transformation, such that more uncertain

transformations correspond to longer edges in the Dijkstra formulation. For Gaussian

coupling estimates, the edge-weight for the Dijsktra algorithm can be a function of ei-

ther the trace or the determinant of the transformation covariance. Thus the path taken

through the graph from the current map to any other local map is the one that min-

imises the uncertainty of the resulting total transformation. If all local estimates are

registered in a common frame using this tree (e.g. for rendering purposes), the inter-

submap transformation estimates outside the tree are ignored. These can be taken into

account using an iterative global least-squares method, which, although it converges
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quickly, cannot be performed during real-time operation for graphs with many local

maps.

Estrada et al (2005) present a submapping framework called Hierarchical SLAM that,

unlike Atlas, imposes loop constraints on the graph during operation. Transforma-

tions between maps are represented in a relative stochastic map. These transforma-

tion estimates, which are purely a function of vehicle pose estimates upon submap

creation, are statistically independent of each other, so that the covariance is block di-

agonal. However, the relative stochastic map of submap transformations might not be

coherent (just as different paths between two local maps in the Atlas graph give dif-

ferent transformations). When an overlap between existing maps is detected, a cycle

is created in the transformation graph, yielding a new constraint on all transforma-

tions in the cycle. This constraint is imposed using sequential quadratic programming

(SQP), which requires computation linear in the number of the maps in the cycle. The

cost of SQP grows cubically with the number of cycles in the graph, so that a graph

with many cycles is expensive to correct, but cycle constraints are composed only

when the cycles are created. Results show that imposing these constraints results in

more accurate and precise global map estimates than CRSF, NCFM, or Atlas (without

offline global optimisation) would yield.

2.3.4 Decorrelation

In contrast to the submapping strategies discussed above, the following approaches to

SLAM take advantage of the weak correlation between spatially or temporally distant

state estimates in order to make the estimation process more efficient.

Guivant & Nebot (2002) note that, when using a relative landmark representation,

the correlations between distant constellations of landmarks in the stochastic map are

weak. This is because they are correlated only indirectly, through other landmarks

and the motion of the robot over significant distances. By decorrelating these constel-

lations, the storage and update costs of EKF SLAM can be reduced from quadratic to
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linear. For each constellation, a small subset of the landmarks are represented in abso-

lute coordinates, and all others are represented in coordinates relative to these. The rel-

ative landmarks in one constellation are only weakly correlated to relative landmarks

of other constellations. Instead of simply ignoring these weak correlations, which

would lead immediately to an inconsistent estimate, the algorithm subsumes the cor-

relations by inflating the diagonal covariance blocks of the constellations. Weaker

cross-constellation correlations means less the uncertainty need be added to each con-

stellation in order to keep the filter consistent. Because the covariance is inflated as

a function of the cross-correlation, the resulting filter is always conservative. Because

the compressed EKF delays modification of the whole map while continuously updat-

ing a subset of it, the decorrelation process occurs only intermittently. This results in

less conservative (but still consistent) estimation.

Thrun et al (2002) and Thrun et al (2004) detail a SLAM filter called the sparse ex-

tended information filter (SEIF) which explicitly ignores weak correlations between

landmarks. In contrast to the various EKF SLAM algorithms discussed above, SEIF

builds on the extended information filter (EIF), which is identical to the EKF except

in terms of representation. The EIF maintains the canonical or information form of the

state estimate, given by the information matrix (inverse covariance) and the informa-

tion vector (mean multiplied by inverse covariance):

H ≡ Σ−1 (2.1)

b ≡ Σ−1µ (2.2)

In the EIF, the measurement update for k simultaneously observed landmarks takes

O(k) time, as the update consists of simply adding information to O(k) elements of the

information matrix and adding to O(k) elements of the information vector. Further,

the information matrix is naturally sparse, because non-zero off-diagonal terms exist

only between landmarks observed at the same time. Unfortunately, the EIF motion

update takes quadratic time, as the old pose estimate must be marginalised out of the

distribution. However, if the information matrix is exactly sparse, so that each row

or column has O(1) non-zero elements, then the motion update can be accomplished

in constant time if the mean vector is known. In order to achieve exact sparsity the

SEIF periodically removes small non-zero off-diagonal elements from the information
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matrix, maintaining a constant number of links (off-diagonal information elements)

per landmark. The mean vector can be efficiently recovered at each time step using

gradient descent, with the predicted mean as the starting point. This generally takes

a small number of iterations. Results show that the SEIF yields maps and trajectories

very similar to those given by full EKF SLAM, but with constant runtime complexity.

However, because correlations are ignored by sparsifying the information matrix, the

filter is necessarily optimistic, and might eventually become inconsistent. Also, all

landmarks are stored in absolute coordinates, which might lead to significant lineari-

sation errors at large scales, though local coordinate frames could be used instead. Be-

cause of the information form of representation, covariance estimates for landmarks

cannot be easily recovered, but instead must be approximated. This can impact the

performance of data-association techniques.

Eustice et al (2005) observe that the sparsification procedure of SEIF, while maintain-

ing consistency between local landmark groups, creates globally inconsistent maps.

Reinterpretation of the process as a Bayes net, in a similar spirit to Paskin (2003),

shows that accounting for conditional independence properties in the landmarks yields

much better consistency in the global frame, while keeping a sparse representation.

Unfortunately, the modified sparsification can no longer be completed in constant

time, so that the cost grows cubically with the size of the map. This makes its ap-

plication infeasible.

Paskin (2003) analyses EKF SLAM as a Bayesian graphical model in general, and an

instance of a Gaussian Markov random field in particular. The junction tree algorithm

for inference by message passing also provides a useful representation of state in this

framework. Paskin shows how the prediction and update steps of EKF SLAM can be

accomplished by message passing on a junction tree. Further, by enforcing a maximal

thickness on the tree, the message passing can be performed in linear or constant time

in the number of landmarks in the map. Thus the filter is called the thin junction tree

filter (TJTF). The thickness of the tree corresponds to the size of the largest cluster in

the tree. Within a cluster, all cross correlations are stored explicitly in the information

form. Using variable elimination, clusters are adaptively resized and split, in order
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to maintain the size bound. Each basic message passing event requires cubic compu-

tation in the size of the biggest cluster, so bounding the cluster sizes yields constant

time operation per message. A straightforward implementation yields constant time

operation when exploring new areas and linear time updates when closing loops. By

further adaptively amortising message propagation over multiple time steps, oper-

ation can be always constant time. The resulting filter very closely approximates the

EKF, while remaining at least as conservative as the EKF. Simulated results show map-

ping results equivalent to the EKF with greatly reduced computation.

The TJTF can be viewed either as an adaptive submapping scheme, or as a more

rigorously-defined adaptive sparsification scheme similar to SEIF. In both cases, it has

a more probabilistically sound motivation and approach, and guarantees at least as

much consistency as the EKF. Unfortunately, as with Bayesian graphical models in

general, application of the TJTF in loopy scenarios is unclear, and the algorithm can-

not be trivially applied to large maps with many cycles.

Wang et al (2005) exploit the relative landmark representation to achieve a sparse

information matrix. A small subset of landmarks (the “base”) is represented with ab-

solute coordinates, and all the other landmarks are represented in polar coordinates

relative to the base. Then observations at each time step are partitioned, with a small

set being used to update the pose estimates, and the rest used solely to update the

relative landmark map. This decouples the relative landmark estimates from the ve-

hicle estimate, and thus keeps the information matrix sparse. Validation on simulated

data shows mapping results similar to EKF SLAM, with superior efficiency. However,

some information is lost in the decoupling process. This effect is directly related to the

ratio of dynamic noise to sensor noise, so for very precise sensor measurements, the

loss is not significant.

Eustice et al (2006a) show that for delayed-state (also called view-based) SLAM, the

information matrix is exactly sparse, allowing consistent constant-time operation. In

delayed-state SLAM, there is no explicit map of the environment. Instead, past pose

estimates (delayed states) are stored and updated. Observations constrain the trans-

formations between these delayed states. In a temporal sequence of poses, each pose
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is only directly dependent on the immediately previous and subsequent poses, and

conditionally independent of all other pose estimates. The information form encodes

this conditional independence property exactly, yielding a band-diagonal covariance

matrix. Revisiting a previous pose corresponds to loop closure, and results in off-

diagonal entries in the information matrix. As long as there are no more than a con-

stant number of loop closures to any delayed state, the information matrix remains

exactly sparse. As with the SEIF, the mean vector is not directly available, but can be

recovered iteratively and approximately in constant time. A similar approach permits

conservative recovery of the diagonal covariance block for the robot pose. Eustice

et al (2006b) further develop the covariance recovery algorithm to allow access to co-

variance estimates for past states, yielding improved uncertainty bounds and aiding

data association and recovery.

In order for this delayed-state algorithm to be well-conditioned, the pose change from

one sensor observation to the next must be fully observable, as only these relative

pose observations serve to constrain the state estimate. The authors show results for

an underwater vehicle that uses both vision and odometry to perform mapping. While

most of the sensor information comes from keypoint matching between pairs of im-

ages, the odometry is required to provide an estimate of the translation magnitude

between frames. Without this, the observations do not constrain the scale of the tra-

jectory from one observation to another, and the incremental estimation procedure is

under-constrained.

2.3.5 Particle Filtering for SLAM

All of the SLAM algorithms discussed above choose a parametrised model to repre-

sent pose and landmark state – typically a high-dimensional Gaussian. Instead, all or

part of the state can be estimates in a parameterless framework using a particle filter.

Here we review important applications of particle filtering to the SLAM problem.

Dellaert et al (1999) describe a direct application of the CONDENSATION particle-

filtering algorithm (Isard & Blake (1998)) to the localisation algorithm. An image
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map of the ceiling of the robot’s environment is built offline, and made available to

the online system. The robot’s only sensor is a brightness pointing toward the ceiling,

giving a scalar observation of the brightness of the ceiling directly above the robot

at each time step. The robot’s pose estimate is represented by a collection of parti-

cles. Initially tens of thousands of pose particles are distributed uniformly over the

environment. Each brightness observation, compared to the image map, yields a like-

lihood for each particle. The particles are reweighted according to this likelihood and

their prior weight, and then resampled to yield the new pose distribution. The only

odometry used by the system is a noisy estimate of total distance traveled over the last

time step. Thus a closely packed group of particles, under the dynamic model predic-

tion, becomes an annulus, which is then further constrained by the observation. While

this is not a solution to the SLAM problem, as the map is known ahead of time, it is

a good example of how a particle filter can naturally represent multi-modal, highly

non-Gaussian distributions for localisation.

Kwok & Dissanayake (2003) present a straightforward application of particle filter-

ing to SLAM estimation. Landmarks are vertical edges, with the robot moving in

the 2D plane. Both the pose estimate and the landmark estimates are encoded by

a large collection of particles (on the order of 10,000). A genetic algorithm is used

to avoid sample impoverishment, wherein particles are not sufficiently densely dis-

tributed around a peaked likelihood function to allow an accurate representation of

the posterior (described below in more detail). As the dimension of the state grows,

so must the number of particles. Results are shown for simulated data using only

15 landmarks (each in two dimensions), so that the state has at most 33 dimensions.

For the circular trajectories used, the map is recovered accurately, but the technique

cannot scale well to larger maps.

Montemerlo et al (2002) make the useful observation that landmark estimates in SLAM

are conditionally independent given the pose trajectory. If the trajectory is known

with certainty, then SLAM is reduced to localisation, and landmarks are actually in-

dependent. The authors exploit this result using a modified particle filter, calling the

resulting algorithm FastSLAM. Instead of parameterising the whole state (as in EKF
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SLAM) or representing all of it by particles (as in Kwok & Dissanayake (2003)), Fast-

SLAM samples the pose trajectory and maintains a distinct Gaussian map conditioned

on each trajectory sample. This mixing of particles and parameterised random vari-

ables is called Rao-Blackwellisation, so FastSLAM is a Rao-Blackwellised particle filter.

Each particle represents a certain sample of the trajectory from the beginning of the se-

quence, as well as a landmark map conditioned on the sample. At each time step, the

particles are first moved according to the dynamic model. Because of the conditional

independence property, the landmarks in a given map, parameterised as Gaussians,

can be maintained in independent EKFs, making updates within each particle con-

stant time. Landmarks are updated by their EKFs, particles are reweighted according

to the likelihood of the observations, and finally resampled to give the prior for the

next update. The resampling stage requires copying of landmark estimates, so a naive

implementation requires linear time in the number of landmarks. However, a clever

copy-on-write scheme reduces this to O(log N) time per particle. As all other opera-

tions are constant-time per particle, total computation per time step is O(M log N) for

M particles and N landmarks. This makes FastSLAM unique among general SLAM

algorithms. Convincing mapping results are shown for maps with tens of thousands

of landmarks.

In general, particle filtering depends on the particle cloud sufficiently representing

the distribution to be estimated, especially near the likelihood function. When this

requirement is not satisfied, the resampled posterior is at best a poor approximation

to the actual posterior, and at worst a completely degenerate representation where

only one particle has survived. This problem is especially acute when the likelihood

function is peaked relatively to the prior given by the dynamic model. Then the par-

ticles in the proposal distribution are spread out thinly, so that few are near the areas

of high likelihood, and sample impoverishment results. FastSLAM 2.0 (Montemerlo

et al (2003)) addresses this problem by explicitly moving the particles nearer to the

peaked likelihood before resampling, by taking into account the latest observations.

This results in better convergence and higher SLAM performance with fewer particles.

The particle filter representation of FastSLAM has the additional benefit of more flex-

ible data association than traditional EKF SLAM, as shown by Montemerlo & Thrun
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(2003). A different data association for each observation can be made by each particle,

and incorrect associations will be automatically penalised by the resampling process.

However, for this additional ambiguity to be statistically well-represented, the num-

ber of particles used must be significantly increased.

In fact, because FastSLAM is effectively compressing the covariance information of

the map using a particle cloud, it is not clear that a fixed finite number of particles

is sufficient to represent an arbitrarily growing map. Bailey et al (2006a) show that

FastSLAM quickly becomes inconsistent as the size of the map increases, and sug-

gests that actually the number of particles might need to grow exponentially with

time. Nonetheless, the FastSLAM algorithm gives useful and accurate, if not consis-

tent, maps for a variety of domains.



3
Mathematical Framework

This chapter presents the mathematical notation and framework used throughout the

thesis.

3.1 Points and Vectors

Vectors are written as lower case boldface characters: x,µ. A point in N-dimensional

Euclidean space (EN ) is represented either as a vector in R
N or as a homogeneous

vector in R
N+1, where vectors differing only by a scalar factor are equivalent:

x ∼= λ · x, ∀λ ∈ R (3.1)

In particular, a point in 3D space is represented as a Euclidean 3-vector or a homoge-

neous 4-vector, often with last coordinate normalised to 1:

(

x y z
)T ≃

(

x y z 1
)T

(3.2)
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Homogeneous coordinates permit a natural representation of direction vectors (as op-

posed to points) with last coordinate set to zero:

(

a b c 0
)T

3.2 Rigid Transformations

3.2.1 Basic Representation

Points and vectors are always specified with respect to a designated coordinate frame.

A rigid transformation between two 3D frames, which preserves distances and angles

between points, is represented as a 4 × 4 matrix operating on homogeneous vectors:
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(3.3)

In this matrix representation, R is a 3 × 3 rotation matrix, with |R| = 1 and RTR = I,

and t is a translation vector. The homogeneous linear transformation is a convenient

representation of the equivalent rigid affine transformation in R
3:
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+ t (3.4)

In this thesis, a transformation with rotation matrix R and translation vector t will

occasionally be written (R, t) for compactness.

3.2.2 Lie Group Properties

Rigid transformations are members of the Lie group SE(3), with identity element

given by I, and group multiplication is naturally given by 4 × 4 matrix multiplica-

tion:
(

R t

0 1

)

=

(

R1 t1

0 1

)

·
(

R0 t0

0 1

)

=

(

R1R0 R1t0 + t1

0 1

)

(3.5)
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Left multiplication of group elements is equivalent to composition of transformations,

so that for A,B ∈ SE(3), the transformation B · A first takes a point through A, and

then through B. The inverse of a transformation composes with itself to the identity:

(

R t

0 1

)−1

=

(

RT −RT t

0 1

)

(3.6)

The group action of SE(3) on R
4 is matrix-vector multiplication as shown above, and

we will also use multiplication to denote the equivalent action on R
3, where the vector

is implicitly augmented with a 1 before multiplication and truncated afterwards.

The tangent space of an element of SE(3) is the 6D Lie algebra se(3), so any rigid

transformation is minimally parameterised as a 6-vector in the tangent space of the

identity element. The tangent vector
(

uT ωT
)T

, u,ω ∈ R
3, is mapped into SE(3)

via the exponential map exp : se(3) → SE(3), which has a closed-form expression.

First define the 3 × 3 skew-symmetric matrix [ω]× for ω ∈ R
3:

[ω]× ≡





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (3.7)

Then, defining terms and using the Rodrigues formula (Gallier (2001)):

A ≡ sin θ

θ

B ≡ 1 − cos θ

θ2

θ ≡
√

ωT ω

R ≡ I + A [ω]× + B [ω]× [ω]×

V ≡ I + B [ω]× +

(

1 − A

θ2

)

[ω]× [ω]×

exp

(

u

ω

)

=

(

R Vu

0 1

)

(3.8)

The exponential map can be implemented efficiently for the case of small θ using trun-

cated Taylor expansions of A and B.

There is similarly a closed form expression of the logarithm function ln : SE(3) →
se(3), which takes a group element to a tangent vector. More details about SE(3) and

Lie groups and algebras can be found in Varadarajan (1974) and Gallier (2001).
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Vectors in the tangent space can be mapped linearly from one coordinate frame to

another using the adjoint. Consider C = (R, t) ∈ SE(3) and ǫ ∈ se(3), with

Adj(C) ≡
(

R [t]× R

0 R

)

(3.9)

δ ≡ Adj(C)ǫ (3.10)

we have

exp (δ) · C = C · exp (ǫ) (3.11)

3.2.3 Linearisation

Differentiating the exponential map about the origin (u = 0, ω = 0) gives Jacobians

for the left-multiplication scenario used throughout this thesis. Let

C ≡
(

R t

0 1

)

∈ SE(3)

x ≡
(

x y z w
)T

Consider the transformation of x through C modified by left-multiplication:

y (u,ω,x) ≡ exp

(

u

ω

)

· C · x (3.12)

Then, differentiating by the parameters of the tangent space at C ,

∂y

∂u
=

(

w · I3

0 0 0

)

(3.13)

∂y

∂ω
=

(

−
(

R
(

x y z
)T

+ wt
)

×

0 0 0

)

(3.14)

∂y

∂x
= C (3.15)

3.2.4 Uncertainty

Often transformations are estimated from noisy data, and thus have uncertain param-

eters. This uncertainty can be modelled by a zero-mean Gaussian error distribution in
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the tangent space around the mean transformation Ĉ:

C = exp (ǫ) Ĉ (3.16)

ǫ ∈ N (0,Σ) (3.17)

Here Σ is a 6 × 6 covariance matrix over the parameters of se(3). Note that the mean

Ĉ need not be represented as an element of se(3) relative to the identity, but instead

can be maintained in (R, t) form as a point on the manifold SE(3). Then the error

distribution is represented in the tangent space, as a covariance matrix.

Because covariance is a first-order measure of error, it can be mapped from one coordi-

nate frame to another using the adjoint. Given B,C ∈ SE(3), and zero-mean noise on

C with covariance ΣC , the covariance matrix ΣB in the frame given by B is computed

using the adjoint of the transformation from C to B:

ΣB = Adj
(

BC−1
)

·ΣC · Adj
(

BC−1
)T

(3.18)

3.3 The Kalman Filter

As the Extended Kalman Filter (EKF) is a key component of many SLAM algorithms,

and is employed throughout this thesis, we give a brief treatment of Kalman filtering

here, with a special focus on the stochastic map of SLAM.

The seminal paper of Kalman (1960) continues to be a good reference for the basic

linear case. There is a vast body of literature on Kalman filtering in general and its

extensions; the introduction by Welch & Bishop (1995) provides an excellent starting

point and informs the presentation and notation of this section.

3.3.1 Parameters

The Kalman filter estimates the state x ∈ R
N of a process as it changes in discrete

time steps, representing the state estimate by its mean x̂ and covariance P. The pro-
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cess is described by two linear stochastic equations for dynamics and observations,

respectively:

xk = Axk−1 + Buk−1 + wk−1 (3.19)

zk = Hxk + vk (3.20)

Here xk−1 is the previous state, xk is the current state, uk−1 is the control input (e.g.

sent to motors) from the previous time step, and zk is the latest observation vector

(from the sensors). The matrices A (dynamic model), B (control model), and H (ob-

servation model) might change at each time step, or, for H, with each observation. The

noise in the dynamics and control process, called the process noise, is described by the

random variable wk, while the noise in the observations, called the measurement noise,

is described by the random variable rk. Both are assumed to be independent of each

other (over time and observations), and to be drawn from white, zero-mean normal

probability distributions:

w ∈ N (0,Q) (3.21)

r ∈ N (0,R) (3.22)

The covariance matrices Q and R parameterise the process and measurement noise

respectively, and can vary with A, B, and H.

In Bayesian probabilistic terms, at each time step the filter calculates a prior distribu-

tion from the state and the dynamic model, multiplies this by a likelihood function

given by sensors and the observation model, and stores the resulting posterior back

into the state. Thus, at the end of time step k, the state parameters (x̂k,Pk) represent

the posterior estimate given all state estimates and observations up to the current time:

p (xk|x1 . . .xk−1, z1 . . . zk) ∼ N (x̂k,Pk) (3.23)

Because this property holds recursively, this expression can be simplified to depend

only on the previous state and current observations:

p (xk|xk−1, zk) ∼ N (x̂k,Pk) (3.24)
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3.3.2 Computation

The recursive computation splits naturally into two stages per time step. The prediction

stage applies the dynamic model, predicting the current state based on the previous

state and any control information, such as odometry. Thus prediction yields a prior

state distribution for the current time step. Then the update stage fuses noisy measure-

ments from sensors into the estimate, bringing the current estimate up-to-date given

all observations. This corresponds to multiplying the prior by the likelihood of the

observations, yielding a posterior. Because the state estimate, dynamics, and mea-

surements are represented by Gaussian random variables, the prediction and update

stages can be computed in closed form.

Using the dynamic model parameters described above, the prediction stage takes the

estimate from last time step, (x̂k−1,Pk−1), to the current prior (x̃k, P̃k):

x̃k = Ax̂k−1 + Buk−1 (3.25)

P̃k = APk−1A
T + Q (3.26)

The update stage is more easily understood in terms of information (inverse covari-

ance), where the information matrix quantifies how well the state estimate is con-

strained:

Λ ≡ P−1 (3.27)

The updated information is the sum of the prior information and the information from

the observation, transformed into state space:

Λk = Λ̃k + HTR−1H (3.28)

The updated mean is simply the information-weighted mean of the prior x̃k and the

measurement zk, transformed into state space:

x̂k =
Λ̃kx̃k + HTR−1zk

Λk

= Pk

(

Λ̃kx̃k + HTR−1zk

)

(3.29)
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Transforming equation (3.28) into covariance form using the Woodbury matrix iden-

tity yields the standard Kalman covariance update equation:

Pk =
(

Λ̂k + HTR−1H
)−1

= P̃k − P̃kH
T
(

HP̃kH
T + R

)−1

HP̃k (3.30)

Substituting (3.30) into (3.29), expanding, and simplifying yields the standard Kalman

mean update equation:

S ≡ HP̃kH
T + R (3.31)

x̂k =
(

P̃k − P̃kH
TS−1HP̃k

)(

Λ̃kx̃k + HTR−1zk

)

= x̃k + P̃kH
TR−1zk − P̃kH

TS−1Hx̃k − P̃kH
T S−1HP̃kH

TR−1zk

= x̃k + P̃kH
T
(

R−1 − S−1HP̃kH
TR−1

)

zk − P̃kH
TS−1Hx̃k

= x̃k + P̃kH
TS−1 (zk − Hx̃k) (3.32)

Usually these update equations are written in the following form:

v ≡ zk − Hx̃k (3.33)

K ≡ P̃kH
TS−1 (3.34)

x̂k = x̃k + Kv (3.35)

Pk = P̃k − KHP̃k (3.36)

The matrix K is called the Kalman gain. The vector v and the matrix S, known as the

innovation and innovation covariance respectively, quantify how “surprising” the mea-

surements are given the prior. That is, the likelihood of the observation is a function

of the the two:

p(zk|x̃k) = N (v;0,S) (3.37)

3.3.3 Extension to Nonlinear Models

The Kalman filter as defined above assumes linear dynamic and observation models,

described by matrices A, B and H. When the dynamic or observation models are
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nonlinear, the Kalman filter can be trivially extended by linearising the models around

the current mean. The filter is then called the Extended Kalman Filter (EKF). Let the

dynamic and observation models be defined by possibly nonlinear (but differentiable)

functions f and h respectively:

xk = f (xk−1,uk−1,wk−1) (3.38)

zk = h (xk, rk) (3.39)

Then the state and measurements are predicted from their means, ignoring noise:

x̃k = f (x̂k−1,uk−1,0) (3.40)

z̃k = h (x̃k,0) (3.41)

Control vector u and zero-mean noise vectors w and r are the same as defined above.

The model matrices are defined as the appropriate differentials of the dynamic and

observation models evaluated at the state mean:

Ak =
∂f

∂x
(x̂k−1,uk−1,0) (3.42)

Hk =
∂h

∂x
(x̃k,0) (3.43)

The resulting EKF equations transform means through the nonlinear models and co-

variances through the linearisations. Hence the EKF prediction equations:

x̃k = f (x̂k−1,uk−1,0) (3.44)

P̃k = AkPk−1A
T
k + Qk (3.45)

And the the update equations:

S ≡ HkP̃kH
T
k + Rk (3.46)

v ≡ zk − z̃k (3.47)

K ≡ P̃kH
T
k S−1 (3.48)

x̂k = x̃k ⊕ Kv (3.49)

Pk = P̃k − KHkP̃k (3.50)
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The ⊕ operator in (3.49) denotes the mean update operation, which need not be sim-

ple addition of vectors. For instance, the state might contain an element C ∈ SE(3)

representing a pose in 3D, in which case the update corresponds to left-multiplication

of C by the exponential of the update vector:

Ĉk = exp (Kv) · C̃k (3.51)

3.3.4 Example: Localisation

A simple example of localisation using the EKF is instructive before describing SLAM

with the EKF. Consider a mobile robot constrained to move along the X-axis of the XY

plane. At each time step, the robot makes a noisy measurement of the bearing to a

fixed beacon located on the Y-axis at (0,1). Assume the robot motion is well-modeled

by constant velocity with white-noise acceleration at each time step. Then the state of

the system, which describes the robot’s position and velocity along the X-axis, is two

dimensional:

xk =

(

xk

vk

)

(3.52)

Each measurement is an offset in radians from the vertical, with positive offsets point-

ing to the right:

zk = h(xk) = arctan (−xk) (3.53)

For simplicity, assume no control input for the robot. Let the delay between time step

k−1 and step k be △tk. Then, according to a constant velocity model, with acceleration

of variance σ2 distance units per time unit squared, we have prediction equations

x̃k = f (x̂k−1,0) =

(

xk−1 + △tkvk−1

vk−1

)

(3.54)

Ak ≡
(

1 △tk
0 1

)

(3.55)

Qk ≡ σ2 ·







1

3
△t3k

1

2
△t2k

1

2
△t2k △tk






(3.56)

P̃k = AkPk−1A
T
k + Qk (3.57)
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The process noise Qk is the covariance over position and velocity corresponding to a

random walk in velocity for △tk time, so it can change with each time step.

Differentiating the observation model,

Hk =

( −1

1 + x̃2
k

0

)

(3.58)

The observation matrix H is 1 × 2 because the measurements are 1D and the state is

2D. The second element is always zero because the measurements do not depend on

the velocity of the robot.

Let the zero-mean noise associated with each bearing measurement of the beacon have

standard deviation of r radians. Then we have the update equations:

S ≡ HkP̃kH
T
k +

(

r2
)

(3.59)

v ≡ (zk − arctan (−x̃k)) (3.60)

K ≡ P̃kH
T
k S−1 (3.61)

x̂k = x̃k + Kv (3.62)

Pk = P̃k − KHkP̃k (3.63)

It is useful to investigate the actual output of the filter in operation. Set △tk = 1,

σ = 1.0, and r = 10−2, and let the actual evolution of xk be given by

xk =
k2

1 + k
− 4 (3.64)

Set x̂0 to the true starting state with zero uncertainty. Running the filter for ten time

steps yields the output in Figure 3.1, where the true state (xk and vk) is shown next to

the estimated state (x̂k and v̂k), along with the standard deviations of the estimate, and

finally the actual error in the measurement induced by noise. Note that the uncertainty

in the position estimate shrinks as the robot moves closer to the origin, where the

bearing measurements better constrain the state. As the robot moves away again, its

position uncertainty starts to grow again. Also, even though the robot never makes

direct measurements of its velocity, the filter gives a reasonable estimate of vk.
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k xk x̂k

√

P1,1 vk v̂k

√

P2,2 zk − h(xk)

1 -4.000 -3.962 0.163 0.000 0.057 0.557 -0.002
2 -3.500 -3.356 0.160 0.750 0.679 0.616 -0.007
3 -2.667 -2.594 0.081 0.889 0.775 0.593 -0.009
4 -1.750 -1.747 0.043 0.938 0.862 0.557 -0.000
5 -0.800 -0.823 0.018 0.960 0.939 0.543 0.015
6 0.167 0.193 0.010 0.972 1.036 0.539 -0.026
7 1.143 1.152 0.025 0.980 0.939 0.539 -0.005
8 2.125 2.091 0.054 0.984 0.939 0.543 0.006
9 3.111 3.035 0.101 0.988 0.946 0.559 0.007

10 4.100 4.074 0.165 0.990 1.058 0.594 0.001

Table 3.1: Evolution of the real and estimated state over ten time steps

3.4 EKF SLAM

Having described the Kalman filter and EKF in general, and having walked through

a simple concrete example, it is now worthwhile to consider the case of EKF SLAM.

The presentation here does not assume specific models or parameters, but describes

the general layout of the state and nature of the stochastic map updates. To reduce

clutter, we omit the k time-step subscripts, as these will be clear from context.

3.4.1 State

In SLAM, the estimated state is a combination of the vehicle (or robot, or pose) state x̂v

and the landmark states {x̂i}. The mean vector consists of these sub-states stacked on

top of each other, and the covariance matrix describes all of the correlations between

vehicle and landmark states:

x̂ =











x̂v

x̂1

...
x̂N











P =











Pv,v Pv,1 . . . Pv,N

P1,v P1,1 . . . P1,N

...
...

. . .
...

PN,v PN,1 . . . PN,N











(3.65)

Note that x̂v need not be represented in vector form. Often it will include quantities

represented as in (3.51). Because P is symmetric, usually only its lower- or upper-
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triangular half is stored.

3.4.2 Prediction

For all of the SLAM algorithms reviewed and presented in this thesis, the landmarks

are considered static. Thus the motion model does not affect their state. Odometry

and control parameters are omitted here, though they can be easily folded into the

vehicle motion model. Under these assumptions, the EKF mean prediction is simple:

x̃v = f (x̂,u) (3.66)

x̃i = x̂i i ∈ {1, . . . , N} (3.67)

Again, because of the static model for landmark state, their uncertainty does not in-

crease with time, so the covariance prediction stage leaves them alone, affecting only

the vehicle covariances:

P̃v,v = APv,vA
T + Q (3.68)

P̃v,i = APv,i i ∈ {1, . . . , N} (3.69)

P̃i,j = Pi,j i, j ∈ {1, . . . , N} (3.70)

3.4.3 Update

In most SLAM scenarios, a bounded subset of the landmarks is observed at each time

step. Observations can be fused into the filter either in serial or as a batch. Both

approaches give the same result, up to linearisation. However, updating with one

observation at a time is usually more efficient, so we present that approach here.

For an observation of a single landmark i, the observation model h(x) is a function

only of the landmark and the vehicle state. Thus the observation Jacobian H is highly
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sparse:

h (x) ≡ h (xv,xi) (3.71)

Jv ≡ ∂h

∂xv

(3.72)

Ji ≡
∂h

∂xi

(3.73)

Hi =
(

Jv 0 . . . 0 Ji 0 . . .
)

(3.74)

Expanding the innovation covariance Si for landmark i shows that it involves only

the state for the vehicle and the observed landmark:

Si ≡ HiP̃HT
i + R

= JvPv,vJ
T
v + JvPv,iJ

T
i + JiPi,vJ

T
v + JiPi,iJ

T
i (3.75)

Thus Si is the projection into the measurement space of the covariance over the vehicle

and landmark i.

The sparseness of Hi has important computational consequences for the update stage.

Writing out equations (3.49) and (3.50),

x̂v = x̃v ⊕
(

P̃v,v P̃v,1 . . . P̃v,N

)

HT
i S−1

i vi

= x̃v ⊕
(

P̃v,vJ
T
v + P̃v,iJ

T
i

)

S−1

i vi (3.76)

x̂j = x̃j ⊕
(

P̃j,v P̃j,1 . . . P̃j,N

)

HT
i S−1

i vi

= x̃j ⊕
(

P̃j,vJ
T
v + P̃j,iJ

T
i

)

S−1

i vi j ∈ {1, . . . , N} (3.77)

Observing one landmark updates the means of all other landmarks through their co-

variance with the vehicle and the observed landmark, but the whole mean update

is computed in O(N) time due to the sparse Jacobian (instead of O(N2) time in the

general case).

Expanding the covariance update:

Pv,v = P̃v,v −
(

P̃v,vJ
T
v + P̃v,iJ

T
i

)

S−1

i

(

JvP̃v,v + JiP̃i,v

)

(3.78)

Pv,j = P̃v,j −
(

P̃v,vJ
T
v + P̃v,iJ

T
i

)

S−1

i

(

JvP̃v,j + JiP̃i,j

)

j ∈ {1, . . . , N} (3.79)

Pj,k = P̃j,k −
(

P̃j,vJ
T
v + P̃j,iJ

T
i

)

S−1

i

(

JvP̃v,k + JiP̃i,k

)

j, k ∈ {1, . . . , N} (3.80)
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Again, observing one landmark changes the covariance of the whole state, but because

of the sparse Jacobian, each covariance block can be computed in O(1) time, so the

whole covariance update takes O(N2) instead of O(N3) time.



4
Monocular SLAM with a

Rao-Blackwellised Particle Filter

4.1 Introduction

As discussed in 2.3, the EKF SLAM framework does not permit efficient mapping of

many landmarks, because its storage and computation costs grow quadratically with

the number of landmarks in the map. This quadratic cost is due to the full correlation

of landmarks with each other as the map converges. Various approaches to reducing

this computational complexity by partitioning the state into submaps (2.3.3) or ex-

ploiting approximate independence of distant landmarks (2.3.4) are reviewed above.

One particle-filtering SLAM algorithm – FastSLAM (Montemerlo et al (2002), Monte-

merlo et al (2003)) – is unique with respect to both its exploitation of the probabilistic

structure of SLAM, and its resulting computational efficiency.
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This chapter describes the application of the FastSLAM algorithm to frame-rate SLAM

with a single camera. The FastSLAM approach is attractive because it allows efficient

filter operation with maps containing thousands of landmarks. However, the domain

of monocular SLAM introduces significant challenges. Some of these challenges are

tackled by Davison (2003), which describes single-camera SLAM with the EKF. The

system described here adopts and adapts some of those techniques, while mapping, at

frame rate, significantly more landmarks than the ∼100 possible with the EKF SLAM

framework.

Most of the robotics SLAM literature, including that on FastSLAM, assumes odometry

or control estimates which are reliable over short time periods, so that sensor obser-

vations are effectively used to correct drift in the odometry. If a single camera, moved

by unknown external forces, is the only sensor, the system lacks any direct odometry,

and the images captured at each time step must provide all of the information used

for SLAM.

If FastSLAM is to be applied in this demanding setting, its particle filtering approach

must be reconciled with the top-down active search framework that allows efficient

image processing and reliable data association in a visual SLAM system. Additionally,

initialisation of new landmarks is nontrivial due to the non-linear partial observation

model of a single camera. Earlier solutions (Davison (2003), Lemaire et al (2005)) do

not harness observations of such partially-initialised landmarks to help constrain the

camera localisation estimate.

4.1.1 Contributions

The contributions presented in this chapter address the difficulties and shortcomings

described above:

• Active search with the FastSLAM framework
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• Inverse-depth linear-Gaussian estimation of partially initialised landmarks, al-

lowing accurate initialisation and the use of such landmarks to constrain pose

• Frame-rate SLAM with hundreds to thousands of point landmarks

First, Section 4.2 describes the details of the general FastSLAM algorithm. Then, Sec-

tion 4.3 explains the state representation and the dynamic and observation models of

the system. Section 4.4 describes the recursive estimation process, including the ac-

tive search framework and the update stage. Section 4.5 introduces the inverse depth

parameterisation and presents the partial initialisation algorithm. Evaluation results

and discussion are given in Section 4.6.

4.1.2 Previous Work

FastSLAM has been previously applied to vision-based SLAM by Sim et al (2005). The

system takes a bottom-up approach to observation data association, building a large

database of SIFT (Lowe (2004)) descriptors into which descriptors from novel views

are matched. This approach precludes real-time operation of the system, which has

an O(N) processing time per frame of roughly 10s. Furthermore, Sim’s system uses

a stereo camera rig, which simplifies the observation model but does not match the

flexibility, efficiency, and small footprint of a monocular system. In later work (Elinas

et al (2006)), the data association algorithm is refined, but each frame still requires

multiple seconds of processing time (350 ms for SIFT computation alone).

Particle filters that do not exploit the FastSLAM factorisation have also been applied

to vision-based SLAM. The system of Kwok & Dissanayake (2003) (see 2.3.5) uses a

particle filter to perform SLAM in a planar world by observing vertical edges with a

camera. Odometry is available to the robot, and results are not shown for more than

15 landmarks.

Pupilli & Calway (2005) represent camera pose hypotheses with a particle cloud,

while landmarks are represented communally. The correlations between landmark
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and pose estimates and between pairs of landmarks are not maintained. The focus

of the work is on robust camera localisation, so results with many landmarks are not

shown. With 500 pose particles, the system operates at frame rate while observing four

fiducial landmarks, but drops to below frame rate while observing eight landmarks.

Inverse depth coordinates have been suggested before; the early work of Harris &

Pike (1988) employs a “disparity space” parameterisation, as it yields more Gaus-

sian 3D estimates. The structure-from-motion algorithm of Azarbayejani & Pentland

(1995) represents inverse focal length and inverse depth jointly in the optimisation.

Davison (2003) initialises the depth of each new landmark with a 1D particle filter,

while the landmark’s directional ray is estimated by the main EKF. The particles are

distributed uniformly over a fixed depth range. Correlations between the landmark’s

depth estimate and other state variables are not maintained during the partial initiali-

sation phase.

The work of Lemaire et al (2005) and Sola et al (2005) describes a multiple-hypothesis

partial initialisation algorithm, where Gaussian estimates are distributed uniformly

along inverse depth, in an attempt to approximate a uniform likelihood function in

image disparity. See Section 4.5 for a comparison of these approaches to the method

presented in this chapter.

4.2 FastSLAM

This section describes the FastSLAM algorithm in detail. Readers familiar with Fast-

SLAM should skip to the next section. The original descriptions of Montemerlo et al

(2002) and Montemerlo et al (2003) provide the basis for the notation and structure

used here. Data association is assumed to be known by the filter, as the active-search

observation framework described below provides it.
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Figure 4.1: The Bayesian generative probabilistic model for SLAM. Poses {s1, . . . , st}
depend on the dynamic model {u1, . . . , ut}, and observations {z1, . . . , zt} depend on
the poses and the landmarks {x1, . . . ,xk}.

4.2.1 Conditional Independence in SLAM

A Bayesian analysis of the SLAM problem yields the generative probabilistic model

shown in Fig. 4.1. The evolution of poses {s1, . . . , st} over time depends on the motion

model {u1, . . . , ut} (subsuming any odometry or control input). Landmark measure-

ments {z1, . . . , zt} are a function of the observed landmark xk and the pose at the

time of measurement. A key insight to be drawn from the model is that estimates of

distinct landmarks are coupled only through the poses. If the poses are known with

certainty, the landmarks can be estimated independently. Of course, perfect knowl-

edge of the poses reduces SLAM to simple mapping, so this independence is not a

surprise. By factoring the estimation process around this conditional independence,

FastSLAM turns a single SLAM problem into a multiple hypothesis mapping problem,

where each hypothesis can be estimated efficiently.

In probabilistic terms, as discussed in 2.1.1, SLAM is the problem of determining the

posterior over pose and landmark parameters given the motion model and all obser-

vations up to the current time. Letting αt denote all instances of variable α up to time

t, the posterior can be written as a conditional distribution:

p
(

st,xt|ut, zt
)

(4.1)
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The conditional independence of landmarks given poses implies that this expression

factors exactly:

p
(

st,xt|ut, zt
)

= p
(

st|ut, zt
)

∏

k

p
(

xk|st,ut, zt
)

(4.2)

The factored form makes explicit the division of the estimation problem into the task of

estimating the posterior over pose trajectory, and the task of estimating the landmark

posteriors conditioned on the trajectory estimate. FastSLAM tackles the trajectory es-

timation using a modified particle filter, and estimates the landmarks, conditioned on

the trajectory particles, with independent EKFs.

4.2.2 Trajectory Particle Filter

FastSLAM maintains a set St of M particles, where each st
m ∈ St is a sample from the

pose trajectory distribution. Each particle represents a full trajectory hypothesis up

to the current time (though only the latest pose needs to be stored). The trajectories

are computed incrementally by sampling from the posterior over poses at each time

step. The true posterior p
(

st
m|ut, zt

)

, however, is not directly available, and is not

representable in closed form.

Instead, the posterior is first approximated by a distribution q, called the proposal dis-

tribution. Then importance sampling is used to sample from the posterior by sampling

{st
m} from q according to importance weights {wm}. This process is an instance of se-

quential Monte Carlo sampling, explained in detail by van der Merwe et al (2000).

The basic definitions given here are sufficient to understand the essential operation of

FastSLAM.

The closer the proposal distribution q is to the true posterior, the better the results of

importance sampling will be. Generating a good proposal for importance sampling

in general is the subject of much research (van der Merwe et al (2000)). A simple

proposal generation algorithm using the dynamic model, as used by Montemerlo et al

(2002), and an improved algorithm, as recommended by Montemerlo et al (2003), are

explained below. The latter is a natural extension of the former.
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4.2.2.1 Simple Proposal

A simple proposal distribution is given by applying the dynamic model:

qm ≡ p
(

st
m|ut, st−1

m

)

(4.3)

The typical case is that the dynamic model, though perhaps nonlinear, has noise de-

scribed by a zero-mean Gaussian distribution, as in the EKF. Then the proposal dis-

tribution {s̃m} is represented by a mixture of Gaussians, where each component is

generated by propagating the last pose sm,t−1 through the dynamic model f , and set-

ting the covariance of the result to the process noise Q:

s̃m ∈ qm ∼ N (f (sm,t−1) ,Q) (4.4)

Each component of the mixture is weighted by the importance weight wm. If M sam-

ples drawn from this mixture are to well-approximate samples from the true posterior,

the {wm} must be calculated as the ratio of true posterior to the proposal distribution

for each component:

wm =
p
(

st
m|ut, zt

)

qm

(4.5)

An expansion using Bayes rule, given in full by Montemerlo et al (2002), shows that

the importance weights, thus defined, are in fact proportional to the likelihood of the

latest observations under the proposal distribution:

wm ∝ p
(

zt|s̃m,ut
)

(4.6)

This result is intuitive: those trajectory samples that best accommodate the latest ob-

servations are the most likely samples of the true posterior. Samples are efficiently

drawn from the mixture by assigning a number of “children” cm for each s̃m propor-

tional to wm, such that the total number of children is M . Then cm samples are drawn

from each mixture component s̃m, yielding the updated set of trajectory samples {st
m}.
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4.2.2.2 Improved Proposal

Using only the dynamic model to generate the proposal distribution, as in Eq. (4.3),

gives a poor approximation of the posterior. This is especially true when the process

noise significantly exceeds the measurement noise. Then the proposal distribution, for

a fixed number of particles, is spread out by the dynamic model, while the observation

likelihood is acutely peaked around the posterior. In these conditions, the importance

weights for most proposal components are tiny, and with a finite number of particles,

children will be sampled from only a very small set of the components – often just a

single component.

In general, a superior proposal distribution is generated by taking into account the

latest observations (van der Merwe et al (2000), Montemerlo et al (2003)). This is

simply expressed by modifying Eq. (4.3) to include zt:

qm ≡ p
(

st
m|ut, st−1

m , zt
)

(4.7)

Representing the improved qm requires incorporating zt into the Gaussian mixture s̃m.

The natural machinery for this task is again the EKF, which linearises the observation

model h (x, s) to fuse the measurements (with noise R) into each component. Note

that there is a separate EKF for each mixture component (corresponding to a particle),

and that the state of each EKF consists only of the pose state of the proposal compo-

nent. While the simple proposal distribution of Eq. (4.4) performs the prediction step

of the EKF, the improved proposal also includes the measurement update step:

(ŝm,Σm) = EKF (sm,t−1, f ,Q; zt,h,R) (4.8)

s̃m ∈ qm ∼ N (ŝm,Σm) (4.9)

By updating the mixture components using the latest observations, the proposal distri-

bution is “moved” closer to the peaked measurement likelihood, and the component-

wise uncertainties {Σm} are reduced.

Note that the only difference between the simple and improved proposal-generation

algorithms is the use of the latest observations. For an accurate posterior, the impor-

tance weights wm (which determine cm), should still be proportional to the likelihood
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of the observations under the unimproved proposal. That is, the importance weights

are identical for the simple and improved proposals.

4.2.3 Landmark Update

Once the trajectory particles have been resampled, yielding St, the landmark estimates

conditioned on each st
m ∈ St can be updated based on the latest observations. Note

that because St contains trajectory samples, instead of trajectory estimates, there is no

uncertainty associated with the pose of each st
m. Thus the landmark estimates con-

ditioned on each particle are independent. Also, even though the latest observations

may have been used to obtain a good sample set St (as in the improved proposal al-

gorithm), the same observations may be used again to update the landmark estimates

associated with each sample, without violating the stochastic correctness of the filter.

This follows from the factorisation of Eq. (4.2).

Let the estimate of landmark i associated with trajectory particle m be xi,m. Each

landmark for each particle is estimated by its own EKF, so its state is given by mean

and covariance in the landmark parameters:

xi,m ∼ N (x̂i,m,Pi,m) (4.10)

For every particle, for each observed landmark, the landmark estimate is updated by

the EKF (without dynamics) using the observation model hi,m

(

xt−1

i,m , st
m

)

:

(

x̂t
i,m,Pt

i,m

)

= EKF
(

x̂t−1

i,m ,Pt−1

i,m , st
m, zi,t,hi,m,Ri,t

)

(4.11)

4.2.4 Computational Cost

Consider a FastSLAM system with M particles and N landmarks, with O(1) land-

marks observed at each time step. The trajectory resampling step of FastSLAM in-

volves first applying the dynamic model to each particle, then improving the resulting
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proposal components using the latest observations, and finally importance sampling

from the improved proposal distribution.

Application of the dynamic model requires O(1) time per particle, so O(M) time in to-

tal. Improving the proposal components using the EKF update also requires constant

time per particle, as there are constantly many landmark observations, and the state

dimension of each particle’s pose EKF is constant. So this stage also requires O(M)

time in total.

The importance sampling stage involves the computation of the importance weights

{cm} and the sampling of children particles. The {cm} can be efficiently computed

by factoring the observation likelihood. Consider simultaneous observations z of k

landmarks:

z ≡
(

z1 . . . zk

)T
(4.12)

The overall observation likelihood is factored by conditioning on each landmark mea-

surement in turn:

αm ≡ {s̃m,ut}
p (z|αm) = p (z1, . . . , zk|αm)

= p (z1, . . . , zk−1|αm, zk) p (zk|αm)

...
. . .

= p (z1|αm, z2, . . . , zk) p (z2|αm, z3, . . . , zk) . . . p (zk|αm) (4.13)

For each particle, each factor in the expression can be computed in constant time just

after the corresponding landmark observation is fused into the proposal by the EKF.

Thus the importance weight computation for M particles and k simultaneous land-

mark observations takes O(Mk) time.

The resampling step, where new particles are drawn from the proposal mixture, is the

most expensive part of the trajectory update. The main cost is copying the conditional

landmark estimates associated with each particle. In a naive implementation, all N

estimates need to be copied for each of the M sampled particles, requiring O(MN)

computation.



4.3 System Model 70

However, only the estimates of the O(1) observed landmarks will actually be modified

in the landmark update step. This can be exploited by storing the landmark estimates

for each particle as leaves in a balanced binary tree, with landmark IDs providing the

keys. Only those nodes on the path from the root of the tree to the observed landmark

need to be copied, while pointers to the other nodes and leaves are unchanged. Using

this copy-on-write scheme, only O(log N) nodes need to be copied for each sampled

particle, resulting in an overall resampling cost of O(M log N).

The landmark update stage modifies constantly many landmark estimates for each

particle, requiring O(M) time in total. Thus the dominating cost of FastSLAM is the

resampling stage, so the algorithm runs in O(M log N) time while requiring O(MN)

storage. For reasonable M , FastSLAM is qualitatively more efficient than EKF SLAM,

which requires O(N2) update computation and storage.

4.3 System Model

This section describes the estimated state of the monocular SLAM system, and the

dynamic and observation models employed by the filter.

4.3.1 State

The SLAM system described here models a single moving camera capturing 640×480

greyscale images of a static environment at 30Hz. The camera has full six-degree-

of-freedom motion, so its configuration at any time instant is represented as a pose

C ∈ SE(3). The environment is assumed to be sufficiently populated with locally-

planar patches of texture, which supply the observations. The filter estimates the 3D

positions {xi} of the centre points of these patches, in a common (but arbitrary) Eu-

clidean coordinate frame.

Thus the estimated state describes a distribution over the pose C of the camera and
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the positions of landmarks {xi}. The uncertainty in pose is represented directly by the

poses of M particles {Cm}, while the uncertainty over landmark parameters {Pi,m}
is given with respect to each particle’s trajectory hypothesis. The overall landmark

mean and covariance could be recovered by taking expectations over all particles:

x̂ = E [x]

=
1

M

∑

m

xm (4.14)

P = E
[

xxT
]

− E [x] E [x]T

=
1

M

∑

m

[(

P1,m 0

. . .
0 PN,m

)

+ xmxT
m

]

− x̂x̂T (4.15)

The number of landmarks changes during the course of mapping; such variations are

accommodated by adding or removing landmarks’ Gaussian estimates from all of the

particles.

4.3.2 Dynamic Model

The camera is assumed to move under a constant velocity model with white-noise

acceleration. Because each particle represents a certain trajectory, the current velocity

of a particle’s pose can be directly computed at the end of each time step, by assuming

that the camera will continue to move with the average velocity displayed over the

last time step △t.

vt
m =

1

△t

ln
(

Ct
m · Ct−1

m

)

(4.16)

This gives a straightforward dynamic model for each particle, taking the sampled pose

from the end of the last time step to a Gaussian pose estimate (Ĉ,Σ) at the current time:

Ĉt+1
m = f(Ct

m,vt
m) = exp

(

△t+1v
t
m

)

· Ct
m (4.17)

Σt+1
m =

1

3
△3

t





σ2

1

. . .
σ2

6



 (4.18)

The process noise, identical for all particles at a given time step, is characterised by

σ ≡
(

σ1 . . . σ6

)T
, the standard deviation of acceleration in the six coordinates of

the tangent space.
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4.3.3 Observation Model

The intrinsic camera parameters, including those which account for nonlinear effects

such as radial distortion, are assumed to be known from offline calibration, and fixed

during online operation. The function taking a point
(

u v 1
)T

in the metric camera

plane to image pixel coordinates is denoted cam. Though cam might not have a closed

form inverse, if it is differentiable, its inverse cam−1 can be efficiently approximated

using the Newton-Rapheson algorithm with a small constant number of iterations.

In order to simplify all of the observation mathematics, noisy 2D measurements from

the image are first transformed through cam−1 into the camera plane. Such measure-

ments are characterised by a normal distribution in pixel coordinates; the mean and

covariance can be transformed using either a Taylor expansion of cam−1 around the

mean, or the unscented transform of Julier & Uhlmann (1997a). Note that, with ra-

dial distortion or any other nonlinear effects, isotropic noise in pixel coordinates might

transform to anisotropic noise in the camera plane.

In this calibrated, camera plane framework, the observation model maps Euclidean

landmark coordinates xi ∈ R
3 into a local camera frame (represented by C = (RC , tC) ∈

SE(3)), and then perspective-projects the result onto the camera plane in that frame:

h(xi, C) = project (C · xi)

= project (RCxi + tC) (4.19)

project





x
y
z



 =







x
z

y
z






(4.20)

The Jacobians of the Euclidean point observation model, computed using the chain

rule, are made explicit in Section A.1.1.
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4.4 Recursive Estimation

At each time step, after a frame is captured from the camera, three stages of compu-

tation take place: prediction, observation, and updates. In the prediction stage, the

set of certain pose samples from the previous time step is transformed into a Gaussian

mixture of poses according to the dynamic model of Section 4.3.2. Using this predicted

pose distribution, and the landmark estimates conditioned on each particle, landmark

observations are extracted from the new frame through active search. The observa-

tions are then used both to refine the proposal distribution, from which new particles

are sampled, and also to update the landmark estimates conditioned on each particle.

Thus, at the end of processing for each frame, the state is again represented by pose

samples with associated independent Gaussian landmark estimates.

4.4.1 Active Search for Observations

In a general SLAM scenario, observations come from an abstract sensor, and the in-

flux of observations does not depend on the estimation machinery. When the sensor

is a camera, and the observations are correspondences between landmarks and im-

age locations, this becomes a bottom-up framework, as employed by Sim et al (2005).

A bottom-up approach requires landmarks with highly distinct and reliable appear-

ances, and makes the task of data association difficult and inefficient.

In contrast, a top-down approach to observing landmarks takes advantage of the ex-

isting information about the camera and the landmarks throughout the observation

process. Observations are made by actively searching new frames for specificland-

marks. The search regions are determined by the current estimates of camera pose

and landmark locations, and by the uncertainty in these estimates. In an EKF SLAM

system like Davison (2003), the search region for a landmark is simply the landmark’s

uncertain Gaussian estimate projected into the image, and gated by likelihood. This

active search approach has two important benefits: efficiency and improved data as-

sociation.
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Because only a small region of the image is examined for a particular landmark, the

search computation is reduced, and furthermore, the region (and thus computation)

shrinks with increasing frame rate. Moreover, the system knows something about how

the landmark should “look”: from the current estimate of camera pose and landmark

parameters, the landmark’s appearance can be approximated to make the search more

accurate. Instead of a match needing to be unique across the whole image, it needs to

be unique only within the constrained search region. And because a specific landmark

is sought, a successful search is also a successful data association.

The active search method used by Davison (2003) is straightforward in the setting of

EKF SLAM. However, with a more complex pose distribution, and distinct landmark

estimates for each pose hypothesis, a slightly different strategy for searching the image

must be adopted. There are multiple possible approaches for taking into account the

whole distribution of poses and landmark parameters for the active search. A simple

but effective one is described here.

First, the mean of the pose distribution is computed. Because the poses are distributed

over the manifold SE(3), the mean is defined as the pose which has minimal sum of

squared distances (in the tangent space) to the particle poses:

Ĉ ≡ arg min
C

{

∑

m

‖ ln(C · C−1
m )‖2

}

(4.21)

Using Adj(C), the minimum can be efficiently computed from most pose distributions

with a small number of Gauss-Newton iterations.

Landmarks can be tested for possible visibility by checking if their mean estimated

positions fall into the viewing frustum of the mean pose. A simple scan through all

landmarks takes O(N) time (though with small constant); for large N , a visibility data

structure over landmark positions can help constrain the visibility test.

Landmarks that might be visible in the current frame are candidates for observations.

For each such candidate, the M Gaussian estimates of the landmark under all particles

are projected into the image, and the mean and covariance of this set of projected
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distributions is computed. This yields a single Gaussian estimate of landmark location

in the image. The landmark should appear within the corresponding 3σ ellipse in the

image with high likelihood.

A landmark’s appearance is described by a small image patch, grabbed from the im-

age where the landmark is first observed. This patch will transform roughly according

to an affine homography, A, a function of the pose displacement from the first obser-

vation. Without knowledge of the patch normal, the skew and shear of A cannot be

estimated, so the homography is constrained to rotation and scaling. The stored patch

is warped according to A, which is computed as a function of the mean pose and the

landmark’s mean estimate. Predictive warping allows landmarks to be observed over

significant viewpoint changes.

The location inside the search ellipse yielding maximal zero-normalised cross corre-

lation (ZNCC) with the warped patch is taken as an observation of the landmark if

the ZNCC score is above a threshold. Use of ZNCC gives invariance to affine light-

ing changes. A quadratic form is fitted to the local ZNCC surface around a match in

order to approximate the measurement noise. If the measurement noise is high, the

match location is poorly constrained, possibly due to repeated texture or an edge-like

appearance. Thus if the square root of largest eigenvalue of the measurement noise

covariance exceeds a threshold (default is 4 pixels), the observation is discarded as a

failure.

4.4.2 Pose and Landmark Updates

Given a set of observations from the latest image, the Gaussian mixture of poses can

be improved, as described above (4.2.2.2). The Jacobians (see Section A.1) are used to

perform repeated EKF updates of each particle’s Gaussian pose estimate, using each

landmark observation in turn. Then M new particles are sampled from the resulting

mixture.

The system evaluated here does not implement the FastSLAM tree data structure for
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achieving O(M log N) computation in the resampling stage. Instead it uses reference-

counted shared pointers to manage landmark estimates, so that each new particle

involves O(N) copying, but only of the pointers (and not the landmark state). The

copying cost, for M∼100 and N∼1000, is not significant compared to the rest of the

update process, though the more efficient data structure should be used for larger N .

Once the new particles are sampled, the same observations are used to update the

landmark estimates conditioned on each particle’s certain pose. These EKF updates,

each in three dimensions, require differentiating the observation model only by the

landmark parameters.

4.4.3 Map Management

During operation, landmarks are acquired from images on demand, using the proce-

dure described below (4.5), so as to maintain a minimum number of visible landmarks

at all times. Because the filter is capable of efficiently handling maps with many land-

marks, more than 40 landmarks can be observed in each frame without exceeding

computation bounds. Thus, when the camera is exploring unmapped territory, land-

marks will be acquired regularly and rapidly. If the camera remains in known regions

with a sufficiently dense map, no landmarks will be acquired. This is a much less

careful and more aggressive policy than that of Davison (2003), as there is minimal

performance penalty for mapping more landmarks, while observing more landmarks

each frame helps pose tracking.

During the motion of the camera, landmarks may be occluded, or their appearance

may not match the static, locally-planar model assumed by the active search frame-

work. Attempts to observe such landmarks will fail. When the ratio of failures to

successes exceeds a threshold (2

3
by default), the landmark is dropped from the map

by removing its estimates from all particles and freeing all resources related to its rep-

resentation.
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4.5 Landmark Initialisation

In the above framework, landmark estimates for each particle are represented as 3D

Gaussians. With a single camera, the depth of a landmark observed only once is

known only up to sign (it must lie in front of the camera). Even when observed

over many time steps, the distribution of the landmark’s position in Euclidean coor-

dinates is poorly approximated by a Gaussian. Such a landmark is said to be partially

initialised, and it must be carefully represented in the map until its estimate can be

represented as a Gaussian in Euclidean space.

In his monocular EKF SLAM system, Davison (2003) maintains a set of depth hypothe-

ses uniformly distributed in a fixed depth range – a particle filter in one dimension.

Every observation of the partially initialised landmark is used to update the depth

filter, until the distribution of depth particles is roughly Gaussian. Then the estimate

is added to the map as a 3D Gaussian. Until this full initialisation occurs, the EKF

maintains an estimate of the landmark’s ray, a 5D Gaussian in global coordinates com-

puted from the first observation. Subsequent observations of the partially initialised

landmark affect neither the ray nor the camera pose estimate.

Sola et al (2005) and Lemaire et al (2005) distribute 3D Gaussian landmark hypotheses

uniformly in inverse depth along the ray, as this arrangement corresponds to constant

density of hypotheses in the camera plane. As new measurements are made, unlikely

hypotheses are pruned, until only one remains. Then the new landmark is fully ini-

tialised (in a central EKF) using the sole survivor hypothesis as a starting point. Until

full initialisation, the landmark observations do not factor into the camera pose esti-

mate, and the strong correlations between the partially initialised landmark’s estimate

and other landmarks are not maintained.

One of the primary contributions of this chapter is a solution to the problem of par-

tial initialisation within the FastSLAM framework that also allows observations of a

partially initialised landmark to help constrain the camera pose during the estimation
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process. The key to the solution is the use of inverse depth coordinates to parame-

terise partially initialised landmarks. After the initial work of this chapter was pub-

lished (Eade & Drummond (2006b)), an extensive study of the use of inverse depth

parameterisations in vision SLAM was published by Montiel et al (2006). A 6D pa-

rameterisation, which subsumes coordinate frame parameters, is incorporated into the

latest version of Davison’s MonoSLAM system (Davison et al (2007)).

4.5.1 Inverse Depth Coordinates

The perspective projection function of Eq.(4.20) takes Euclidean points in the camera

frame to the camera plane by dividing their x and y coordinates by the z coordinate.

This division step makes the function highly nonlinear, so that a Gaussian distribution

in the camera frame does not transform to a Gaussian in the camera plane. Thus

measurements with Gaussian uncertainty in the camera plane will not combine to give

a Gaussian estimate in the camera frame. However, modifying the parameterisation

of points in the camera frame makes the projection function linear.

Let
(

x y z
)T

represent a 3D point in Euclidean coordinates. The same point can be

described in inverse depth coordinates:
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 (4.22)

This representation can also be derived from a point in homogeneous coordinates by

normalising the third coordinate to 1, instead of the fourth coordinate as in the Eu-

clidean case:
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(4.23)

In these coordinates, the projection function from camera frame to camera plane is
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exactly linear (and independent of q):

inverse depth project





u
v
q



 =

(

u
v

)

(4.24)

This linearity implies that a Gaussian measurement in the 2D camera plane can be

fused with a Gaussian estimate in the 3D camera frame using the Kalman filter to give

a Gaussian posterior in the camera frame.

However, the camera is moving, so the observation model must account for trans-

formation between coordinate frames according to the camera motion. In the case of

Euclidean coordinates, this transformation has a constant Jacobian by the point pa-

rameters (namely, the rotation matrix). But with inverse depth coordinates, the trans-

formation is not so simple. Consider a camera motion given by C = (R, t) ∈ SE(3).

Using the homogeneous representation (4.23),

C ·
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(4.25)

This can be converted to Euclidean coordinates in the camera frame by dividing by

the fourth coordinate, q, though this (or any other) scaling has no effect on the pro-

jection onto the camera plane. The total inverse depth observation model h∗, with

landmark coordinates x∗ ≡
(

u v q
)T

observed under camera displacement C , is

the composition of camera frame transformation and perspective projection:

h∗ (x∗, C) = project (C · x∗)

= project





1

q



R
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v
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= project
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Carrying through the projection, with D ≡ R
(

u v 1
)T

,

h∗ (x∗, C) =
1

D3 + qt3

(

D1 + qt1

D2 + qt2

)

(4.26)
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From this expression it is clear that h∗ is nearly linear in the coordinates u, v, and q as

long as the camera rotation remains mostly around the optical axis (so D3 ≈ 1) and

the displacement along the optical axis is small relative to the depth of the point (so

qt3 ≈ 0).

The camera displacement C is expressed relative to a fixed coordinate frame C0 in

which the landmark estimate is represented. The natural choice for C0 is the pose from

which the landmark is first observed, as subsequent camera poses will be nearby, mak-

ing the observation model nearly linear. Within the FastSLAM framework, the camera

pose at the end of a time step is represented independently in each particle with cer-

tainty. The partial initialisation algorithm saves this first pose as the coordinate frame

for the inverse depth parameterisation. The Jacobians of the inverse depth observation

model are shown in Section A.1.2.

The near-linearity of the inverse depth observation model implies that the EKF, or its

inverse form the EIF, can be employed to estimate x∗ in the local pose neighbourhood

of the first sighting of the landmark, as the distribution of the estimate is nearly gaus-

sian. In contrast, the distribution of Euclidean coordinates is a cone with apex at the

camera centre and altitude along the optical axis, and a single Gaussian approxima-

tion of this distribution is poor. Figure 4.2 shows the evolution of the posterior over

depth and over inverse depth, as a new landmark is repeatedly observed. Both distri-

butions become more peaked and Gaussian as observations are made. However, only

the inverse depth estimate is well-approximated by a Gaussian at all stages.

4.5.2 Initialisation Process

The landmark initialisation process can now be summarised:

1. Landmark selection: A new landmark is created by selecting an interest point

(u0, v0) from the current image.
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Figure 4.2: Depth and inverse depth estimates for successive observations of a new
landmark. The depth estimate is not Gaussian when the depth is uncertain. The in-
verse depth estimate is always Gaussian

2. Map augmentation: The landmark’s inverse depth estimate,
(

u0 v0 1
)T

, is

appended to every particle, with covariance given by the localisation noise of

the keypoint (and infinite uncertainty in the third coordinate). Each particle’s

current camera pose is stored with the landmark estimate as C0.

3. Re-observation: Through active search, the partially initialised landmark is ob-

served in subsequent images. Just as for fully initialised landmarks, such obser-

vations are used to improve the proposal distribution, and then to update the

landmark’s per-particle inverse depth estimates with the EKF.

4. Full initialisation: When the landmark’s inverse depth landmark estimate for a

given particle becomes sufficiently Gaussian in Euclidean coordinates, the esti-

mate is transformed into global Euclidean coordinates. The landmark is hence-

forth fully initialised with respect to that particle.

4.5.2.1 Landmark Selection

The appearance model for landmarks is an image patch that is assumed to be locally

planar and will be localised according to the algorithm described above (4.4.1). New

landmarks should be chosen with this task in mind (Shi & Tomasi (1994)). In practice,

most interest point detectors will suffice, as the appearance model with warping and
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normalised cross correlation is invariant enough to viewpoint changes that tracking

succeeds over reasonable motions.

However, efficiency is a primary concern, as new landmarks might be acquired in any

frame. The interest point detection cannot consume too much of the per-frame compu-

tation budget, which for a 30Hz camera is 33 ms for all processing. This requirement,

on current hardware, makes a direct application of the SIFT algorithm (Lowe (2004)),

for example, undesirable.

The system of Davison (2003) applies the detector described by Shi & Tomasi (1994)

to rectangular subregions of the image into which no existing landmarks project. If

a sufficiently strong interest point is detected in the candidate region, it is chosen as

a new landmark. The work of Lemaire et al (2005) uses Harris corners (Harris &

Stephen (1988)) detected from the whole image, and attempts to choose corners in the

parts of the image that have most recently come into view.

The vision SLAM system described here applies the FAST corner detector (Rosten &

Drummond (2005), Rosten & Drummond (2006)) to the whole image downsampled

to 320 × 240, then selects corners that are maximally distant from the locations of ex-

isting landmarks. The FAST corner detector runs on this quarter-size image in ∼1 ms

on current desktop hardware, so it uses a minimal fraction of the computing budget.

4.5.2.2 Map Augmentation

Upon selecting the image location of a new landmark, a corresponding inverse depth

estimate is added to each particle. The interest point location is assumed to have

Gaussian noise with 1 pixel isotropic variance. The image location and uncertainty

are unprojected through cam−1 into the camera plane, and this 2D Gaussian forms the

initial estimate of parameters u0 and v0 for the landmark. The q0 parameter mean is

set to 1. Using an EKF for inverse depth landmark estimation, q0 is assigned very large

variance to reflect the lack of prior knowledge. If the EIF is used instead, the lack of

knowledge can be represented exactly by zero information for q0. The current pose
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estimate of each particle is recorded with the landmark estimates to establish the fixed

inverse depth coordinate frame.

4.5.2.3 Re-observation

Observation of partially initialised landmarks follows the general active search frame-

work. However, the process can be made more efficient by aggressively discarding

new landmarks that are difficult to track.

The FAST detector is highly reliable over small viewpoint changes, detecting mostly

the same corners. This property is exploited by further constraining the active search

for partially initialised landmarks. For these landmarks, ZNCC is performed only

in small windows surrounding the FAST corners inside the search area. If the new

landmark’s appearance changes over the first few views to the extent that the FAST

corner is not re-detected, the landmark is unlikely to track well by the standard search

method, and is dropped from the map early.

A common failure mode of SLAM systems is the inability to deal with a slowly-

moving or static camera. In these scenarios, noise dominates the narrow baseline be-

tween frames, and the depth estimates of new landmarks spuriously converge. This

tendency can be avoided by requiring the first several observations of partially ini-

tialised landmarks to decrease the uncertainty of q by a non-negligible amount. The

threshold is imposed at landmark update time. If q is highly uncertain (e.g. on a land-

mark’s second observation), and the latest observation does not adequately reduce the

variance of q, the estimate is left unmodified. This mitigates early depth convergence

when the camera is not translating.

Observations of partially initialised landmarks pass through the common filter up-

date process described by 4.4.2. Thus, in contrast to the out-of-filter depth estimation

of Davison (2003) and Sola et al (2005), such observations automatically constrain the

camera pose as well as the landmark estimate. In the case of fully initialised landmarks

with Gaussian estimates in Euclidean coordinates, the constraint on the pose estimate
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is obvious: a 2D image observation constrains two abstract dimensions of a pose esti-

mate. Though the update mathematics is identical for observations of landmarks with

highly uncertain or unknown depth, it is worthwhile to consider intuitively how a 2D

observation effectively provides a 1D constraint on the pose.

Consider the observed location (u, v) of a new landmark in the image in terms of the

landmark’s epipolar line, which is determined by the pose displacement from the first

pose in which the landmark was observed (C0) to the current pose. The vector, in

the camera plane, from the epipole (projection of C0) to (u, v) has components along

the epipolar line and also perpendicular to the epipolar line. The first component,

along the epipolar line, yields information about the landmark’s depth (or inverse

depth). The second component, reflecting perpendicular distance from the epipolar

line, should be zero for perfect estimates of camera pose.

Thus, observations of new landmarks are a measure of epipolar reprojection error.

Fusing these observations into the filter effectively applies the epipolar constraint over

multiple frames and a variety of frame pairs. As with standard epipolar geometry

estimation, this gives the filter information about both rotation and translation, up

to scale. Thus, even when viewing mostly partially initialised points (such as at the

beginning of SLAM) the camera pose is well-constrained (Figure 4.3).

4.5.2.4 Full Initialisation

After each update of a partially initialised landmark’s estimate in each particle, the

variance of q is examined. If the variance is small relative to the mean, then the depth

is well-constrained, and the estimate is roughly Gaussian in Euclidean coordinates.

The 3D estimate is transformed from inverse depth to Euclidean coordinates using

the unscented transform (Julier & Uhlmann (1997a)), and the landmark is marked

as fully initialised within that particle. The unscented transform is used to avoid the

systematic bias that would result from directly transforming the inverse depth mean

to the Euclidean mean: the depth would be consistently underestimated due to the

nonlinearity of the inversion.
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Figure 4.3: The pose estimate, shown as a particle cloud, is poorly constrained by
the four fully initialised landmarks, shown as yellow blobs (left). Incorporating five
partially initialised landmarks, shown as red rays, helps narrow the pose estimate
(right)

Note that the event of full initialisation can occur at different times for the same land-

mark with respect to different particles. For those particles whose trajectory does

not well-constrain the inverse depth estimate, the landmark will remain partially ini-

tialised for longer. If an estimate has spuriously converged in a particle, then subse-

quent observations should have lower likelihood under that particle, and it will yield

fewer or no children in the resampling process.

4.6 Results

4.6.1 Running the System

The implementation can be initialised with or without a fiducial grid of known geom-

etry. When the grid is used, it establishes the coordinate system of mapping, and four

landmarks known with certainty. When mapping starts without the grid, the pose at

the first time step is assumed to be the identity.
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Input video can be recorded or live; the calibration of the camera is known to the sys-

tem and assumed fixed throughout a run. The camera providing the live and recorded

video used for evaluation captures 640 × 480 8-bit greyscale frames at 30Hz. The 6-

parameter lens model includes two parameters for barrel distortion. The field of view

of the lens is roughly 60°.

4.6.2 Visualisation

The estimated camera pose and map are rendered in a 3D view at the end of each time

step. During resampling, the first particle sampled from the mixture component with

the largest weight is marked as the “mode” particle. The landmark of and pose esti-

mates of the mode particle are used to render the view. Fully initialised landmarks are

depicted by yellow three-standard-deviation uncertainty ellipsoids, while the ellip-

soids of partially initialised landmarks are pink. Partially initialised landmarks with

highly uncertain depths are depicted as red rays emanating from the camera posi-

tion of their first observation. The camera pose estimate is shown as a small frustum.

Alternatively, the pose estimates from all particles are rendered as small vectors cor-

responding to the optical axis of the pose.

The video image is rendered in a separate view, with image search ellipses of fully

initialised landmarks shown in yellow and those of partially initialised landmarks

shown in pink. The search lines for partially initialised landmarks with highly uncer-

tain depth are red. Successful observations are shown by a green box where the patch

correlates best with the search region.

Figure 4.4 shows the 3D view and corresponding video image when the system is

observing only the four fiducial landmarks. Figure 4.5 shows the pair for a mostly

planar desktop scene.
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Figure 4.4: Rendered view and video image of a fiducial grid. The grid is used for
initialisation

Figure 4.5: Rendered view and annotated video image of a mostly planar scene



4.6 Results 88

Figure 4.6: Annotated video image of real planar scene

4.6.3 Accuracy

The accuracy of the mapping and localisation of the SLAM system are evaluated using

both real and synthetic sequences.

4.6.3.1 Mapping Accuracy

Figure 4.6 shows a video image from a real planar scene created by placing paper

sheets on a 1m by 2m section of floor. The camera is panned, by hand, back and forth

over the scene for 30 seconds, facing the floor from an altitude of ∼30cm. M = 100

particles are used. The generated map contains 243 landmarks. The map, viewed from

an angle that highlights its planarity, is shown in Figure 4.7. A maximum-likelihood

plane is fit to the landmark estimates; all fully initialised landmark estimates have

means within 0.3 cm of the plane, so the error is less than 1% of the viewing distance.

The same experiment is performed using a synthetically rendered sequence. The scene

consists of a single textured plane, and the virtual camera twice pans across the plane

and back to the starting position. The rendering is performed a linear projection model

and a 50° field of view. The resulting map contains 312 landmarks, and The same

plane fitting is performed. All landmarks lie on the plane within 0.2% of the viewing

distance. The superior mapping accuracy relative to the real sequence could be due to
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Figure 4.7: Perspective and side-on view of the map of a real planar scene

Figure 4.8: Map of a synthetically rendered corner structure, at the middle and end of
the sequence

a higher density of texture in the rendered scene or an imperfect camera calibration of

the real camera.

To confirm that the system correctly maps 3D structure, a synthetic sequence of two

planes meeting in a right angle is rendered and run through the system. The virtual

camera starts facing the corner, moves forward then pans right and left, eventually

returning to the starting point. The resulting map, shown with camera trajectory from

overhead in Figure 4.8, shows that the reconstruction is accurate. Two planes sepa-

rately recovered by least-squares fitting to the appropriate landmark estimates have a

meeting angle of within 1° of a right angle.
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Plane 1 Plane 2 Corner
740 frames 782 frames 755 frames

M RMS Err (m)

10 0.015

20 0.015

40 0.017

80 0.016

160 0.014

320 0.015

640 0.014

M RMS Err (m)

10 0.021

20 0.015

40 0.014

80 0.014

160 0.014

320 0.014

640 0.013

M RMS Err (m)

10 0.046

20 0.061

40 0.031

80 0.036

160 0.032

320 0.030

640 0.022

Table 4.1: Localisation error relative to ground truth trajectory for synthetic sequences,
using M particles

4.6.3.2 Localisation Accuracy

The pose estimates produced by the system are compared to ground-truth for syn-

thetic sequences. The localisation error is expressed in terms of absolute positional

discrepancies between the estimated and real camera poses. Because the sequences

are processed without fiducials, the output trajectory is first transformed to the same

coordinate system as the reference trajectory using least squares. The results for syn-

thetic sequences are shown in Figure 4.1. In the first plane sequence, the virtual cam-

era stays on a straight line without rotating. In the second plane sequence, the camera

makes small motions and rotations off of the straight trajectory. Roughly 40 landmarks

are observed each time step.

The trajectory estimate is also compared to the output of global iterative bundle ad-

justment for a real sequence. All landmark observations made while the system is

running are recorded, and provide the input to bundle adjustment, using the map and

trajectory estimated by SLAM as the starting point for optimisation. Thus the poste-

rior of global optimisation is the best the filter can hope do with the observations it is

given.

The test sequence, of 1835 frames, is a view of several desktops and walls in an indoor

area, covering 12 square meters. With the default settings (∼30 landmarks observable
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Figure 4.9: Map and camera view at the end of an indoor sequence

Desktop and Wall Sequence, 1835 frames

M RMS Err (m)

10 0.065

20 0.058

40 0.043

80 0.038

160 0.040

320 0.038

640 0.036

Table 4.2: Localisation error relative to bundle adjustment trajectory for an indoor
sequence, using M particles

each frame), the resulting map has 270 landmarks, well beyond the map complexity

feasible with EKF SLAM. The map view and corresponding camera image at the end

of the sequence is shown in Figure 4.9. The localisation error, larger than for synthetic

sequences, generally decreases with increasing number of particles, as shown in Fig-

ure 4.2.

4.6.4 Efficiency

For all of the sequences shown above, when M ≤ 160, the system spends no more than

33 ms processing each frame, on a 3.0 GHz Pentium Core 2 Duo. With small number

of particles (M = 20), the processing time is dominated by image processing, while
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Figure 4.10: Processing time with respect to number of landmarks, using 80 particles.
The linear growth is due to the copying in the particle resampling step

for large M , the per-particle updates and resampling require an increased chunk of

computation.

In order to test the performance of the system when mapping many landmarks, a syn-

thetic sequence is generated that contains a large, textured plane. The virtual camera

moves across the plane in a scanning pattern. There are N = 1363 landmarks in the

final map.

Figure 4.10 shows the timing results (not including visualisation) for a run with M =

80 particles. The processing time never exceeds 16 ms. The implementation does not

include the copy-on-write landmark tree that allows resampling in O(M log N) time,

so the cost of resampling grows linearly with N . However, the constant factor is small:

the slope of the least-squares line fit to the data is 0.00365, or a penalty of 3.65 ms per

frame for an additional 1000 landmarks. A simple scan through the landmark set is

used to determine what landmarks should be observed, so some of the linear penalty

could also be mitigated by storing landmarks in a spatial data structure.
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Loop Closing Success

r M = 20 40 80 160 320 640 1280

1.50 X X X X X X X

1.75 X X X X X X

2.00 X X X X X

2.25 X X X X X

2.50 X X X

2.75 X X

3.00 X

3.25 X

3.50

Table 4.3: Loop closing results vs. radius of trajectory (r) and number of particles (M )

4.6.5 Loop Closing

When the trajectory of the camera is a loop, where the starting scene is not again visible

until the camera returns to the same area, reobserving the initial landmarks by active

search requires accuracy and precision in the state estimate. Inevitably, the pose (and

map) estimate around a trajectory of this sort will accrue error. Then, upon returning,

the landmark searches succeed only if the uncertainty in the estimate is well-captured

in addition to the mean.

To evaluate the loop closing ability of the system, a planar scene is rendered, with the

camera facing the plane and moving in a circular trajectory parallel to the plane, at

distance 1 unit. The radius of the circle determines the size of the “loop”. For a given

set of parameters, the estimate may or may not be accurate enough to close the loop

at the end of the trajectory. This binary condition is used to establish the number of

particles necessary to allow at least simple loop closing at different scales.

The radius of the circle is varied from 1.5 to 3.5 units. The field of view of the virtual

camera is roughly one square unit. The results, shown in Figure 4.3, show that a larger

number of particles are required to close bigger loops. More specifically, the number

of required landmarks appears to grow exponentially with the size of the loop.
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4.6.6 Discussion

The performance results show that adopting FastSLAM as the estimation filter for

monocular SLAM is efficient and feasible. For small environments, the system is ca-

pable of accurately mapping hundreds or thousands of landmarks at frame-rate, per-

mitting a far denser representation of the scene than can be achieved with EKF SLAM.

The partial initialisation parameterisation, using inverse depth coordinates, accom-

modates the problem of unknown depth in the monocular setting without resorting

to out-of-filter methods. Active search is key to the efficient operation of the algorithm,

as only a small fraction of the image is considered when looking for a given landmark.

However, the approach has considerable limitations. As with any purely active search

framework, localisation depends on the tracking assumption – that landmarks will

be found near where they are expected, according to their estimates and the dynamic

model. When the dynamic model is violated, for instance by dropping or jerking the

camera, tracking fails.

The particle cloud provides a sampled representation of the state distribution. This

must be a faithful representation for estimation to succeed. As the state dimension

grows, due to complex maps or long trajectories, the number of particles must grow

with it. The loop closing results suggest that this growth might be exponential. This

corroborates the suggestion of Bailey et al (2006a). The causes of this problem in

general are discussed further in Chapter 6.

Nonetheless, for small domains and smooth trajectories, the system allows mapping

of an order-of-magnitude more landmarks in real time than previously feasible. The

output is accurate enough, at least locally, to use it as the starting point for further

batch optimisation, or perhaps as the input for more sophisticated online estimation.



5
Edge Landmarks

5.1 Introduction

Point landmarks have desirable properties in the context of visual SLAM: point fea-

ture selection and description are well studied, the resulting feature descriptors are

well-localisable in images, and they are highly distinctive, easing the task of data asso-

ciation. Many environments, however, have abundant edges and edge-like features.

By tracking edges in the world, a SLAM system can build richer maps containing

higher-level geometric information, and need not rely on an abundance of good point

features.

However, in contrast to point features, edges can be well-localised in only one image

dimension, and often have non-local extent in the other image dimension. Though

highly invariant to lighting, edges are also difficult to distinguish from each other
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locally. Such characteristics make the use of edge landmarks in visual SLAM chal-

lenging.

5.1.1 Contributions

This chapter describes how edge landmarks can be incorporated into the SLAM sys-

tem of Chatper 4. A solution to this overall task requires several contributions:

• Definition and representation of edge landmarks as short, straight pieces of 1D

structure

• An active search method for localising edge landmarks in an image

• An efficient algorithm for acquiring suitable new edge landmarks from an image

• A parameterisation of new edge landmarks permitting partial initialisation

• A robust data association method for accommodating ambiguous edge observa-

tions

The rest of this section reviews related work. Section 5.2 defines edgelet landmarks

and their representation. Section 5.3 describes how edgelets can be observed within

an active-search framework. Section 5.4 presents an efficient method for selecting new

edgelets from an image. Section 5.5 describes how new edgelets can be initialised

reliably. Section 5.6 explains a simple robust data association algorithm for dealing

with inevitably ambiguous observations of edge landmarks. Section 5.7 presents and

discusses performance results on real video sequences.

5.1.2 Related Work

Edges have been recognised as critical features in image processing since the begin-

ning of computer vision. While edge detection methods abound, the algorithm of
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Canny (1986) for choosing edgels in an image has emerged as the standard technique,

and consistently ranks well in comparisons (Heath et al (1996); Shin et al (1999)). It

provides a starting point for the edge feature selection algorithm presented in this

chapter.

The invariance of edges to lighting, orientation, and scale makes them good candi-

dates for tracking. For instance, model-based trackers use edge models to permit

highly efficient tracking of moving objects or cameras. The RAPID tracker (Harris

(1992)) is an early example of this approach, with the work of Drummond & Cipolla

(2002) refining and improving the method. At each time step, a wireframe edge model

of the structure is rendered into image space, and the camera pose is optimised to

make the model align with the edgels in the image. This predict-update loop resem-

bles the active-search model of SLAM; the difference is that in the tracking case, the

structure is known. Model-based tracking with edges is a solution to a particular case

of the more general structure-from-motion problem.

Reitmayr & Drummond (2006) use a richer, textured model of the environment to

improve edge tracking. Instead of using only the wireframe edges, the tracker renders

the textured model into the current scene, detects natural edges from the rendered

image, and then tracks them in the live image. Thus edges that are weak or occluded

from the current viewpoint are not detected and not tracked. This gives good results

in the outdoor environments tested, but depends on the availability of a rich model.

The work of Taylor et al (1991) (see 2.2.1) estimates planar motion and the location

of vertical edges in the plane. This basic algorithm is extended by Taylor & Krieg-

man (1995), which operates solely on edge segments detected in frames of a video

sequence, and represents lines of arbitrary orientation in 3D. A global cost function is

optimised to yield camera trajectory and line parameters. Each line segment is param-

eterised as part of an infinite line by its closest point to the origin and its direction, in a

common global coordinate frame. Segments are extracted from video with the Canny

edge detector. The cost function measures reprojection error as the total area between

projected lines and edge segments in the image space. To initialise the optimisation,

camera orientations are randomly selected from a constrained set of possibilities. Then
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the local minimum of the cost function over all parameters is found by gradient de-

scent. This is performed with multiple starting points, and the best local minimum is

returned as the result. The algorithm yields reasonable reconstructions for sequences

of 10-30 well-separated images. Additional results of the algorithm are shown in Shin

et al (1999).

The previously discussed SLAM systems of Neira et al (1997) and Kwok & Dis-

sanayake (2003) both treat vertical edges as landmarks, with the camera constrained

to the 2D plane. The vision SLAM system of Folkesson et al (2005) is designed to sup-

port heterogeneous landmark types in a common framework. While lines are used as

features, they are assumed to be confined to planes of known orientation.

Since the initial publication of the work of this chapter (Eade & Drummond (2006a)),

others have investigated the problem of SLAM with edges of arbitrary orientation.

The system presented by Gee & Mayol-Cuevas (2006) takes a model-based tracking

approach, first estimating edge segments with an unscented Kalman filter framework,

then adding them to an edge model used for tracking. New edge landmarks do not

contribute to the localisation process until they have been set as part of the model.

Once part of the model, the edge parameters do not change. The system described

in Lemaire & Lacroix (2007) uses a Gaussian sum representation, related to that of

Lemaire et al (2005), to initialise new edge landmarks, and a constrained EKF to main-

tain the state estimate. Line segments are represented with Plücker coordinates and

extent bounds, and the observation process uses set-to-set matching of segments to

perform data association.

Most similar to the work of this chapter is the system by Smith et al (2006), which esti-

mates line segment landmarks in the standard EKF framework. The selection and ob-

servation process for landmarks focuses on long edge segments in the image, detected

between interest points. The endpoints provide the parameterisation for the segments.

The partial initialisation process ignores correlations between new and existing land-

marks until the new landmarks are fully initialised. In the EKF SLAM framework,

the map size is limited by computational bounds, so line segment landmarks must be

conservatively acquired, and more than a few dozen cannot be mapped at frame rate.
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5.2 Edgelet Landmarks

Point landmarks fit well in a SLAM system because they have a well-defined rep-

resentation, both in image space and world space. In the image, a point landmark is

represented as a locally planar patch with a distinct, but view-dependent, appearance.

In the world, it is estimated as a three-dimensional point with Gaussian uncertainty.

In order to use edge features, their image and world representations must also be de-

fined.

5.2.1 Definition

The edge features that the SLAM system will estimate, dubbed edgelets, are defined

with locality properties analogous to those of points. An edgelet is a local portion

of an edge, with an edge being a strong, one-dimensional intensity change. Thus,

given an edge, which may have significant extent in an image, any small segment on

the edge can be taken as an edgelet observation. Furthermore, the edge need only be

locally straight: a slow curve has many locally line-line pieces, all of which can be con-

sidered edgelets. Tracking only local edge segments avoids several problems inherent

to estimating full edges in the world. Full edges, because they are not local quanti-

ties in an image, may be partially occluded, or broken into pieces in the image. They

might never be wholly visible, so determining their full extent and actual endpoints

could be impossible. The locality of edgelets means that assumptions made about an

edgelet as a whole (for instance, that it is straight) is much more likely to be satisfied

than the same assumption made about a long edge.

5.2.2 Representation

An edgelet in the environment can be represented as a 3D point x corresponding to

the centre of the edgelet, and a unit vector d̂ ∈ S2 denoting the direction of the edgelet.

If d̂ is a 3D vector with unit length, this representation is not minimal, as d̂ has only
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two degrees of freedom. However, the 3D representation is often more convenient

in calculations. The uncertainty in the parameters is represented as a Gaussian with

covariance P. Given a camera pose C = (R,T) ∈ SE(3), the observation model h1

sending x to a point in the camera plane is identical to the observation model for 3D

points:

X ≡ Rx + T

h1(x) = project (X) (5.1)

The direction, d̂, is projected to a unit vector in the image plane:

D ≡ Rd̂

h2(d̂) =

(

X3D1 − X1D3

X3D2 − X2D3

)

/

∣

∣

∣

∣

(

X3D1 − X1D3

X3D2 − X2D3

)∣

∣

∣

∣

(5.2)

(5.3)

The Jacobians of the edgelet observation model are shown in Section A.2.1.

Due to the aperture problem along the edge, observations can not decrease the un-

certainty of x along the direction d̂. However, the location of the edgelet along the

edge to pixel accuracy is determined from the first observation (Section 5.5), which is

sufficiently precise to allow subsequent observation by active search.

5.3 Observing Edgelets

5.3.1 Prediction

Active search is employed to observe landmarks in video frames. Given a Gaussian

estimate of an edgelet (x, d̂), the landmark is observed by predicting its location in an

image, with gated uncertainty region, and searching for the edgelet in the region. The

edgelet’s parameters project into the image plane according to 5.1 and 5.2, and its co-

variance projects through a linearisation of the observation functions h1 and h2. Then

the image plane quantities project into pixel coordinates according to the calibrated
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camera model cam. The result is a prediction of the edgelet in the image: an image

location xp and a 2D image direction dp, with associated covariance.

The prediction implies that the system expects to find a short edge segment centred

at xp with normal np perpendicular to dp. In the case of active search for point land-

marks, the appearance of the landmark (a warped patch) is assumed roughly constant

over the search region. The appearance model for edges is much simpler (a directed

intensity discontinuity), but the same assumption is applied. The normal direction is

approximated as constant over the search region, which is given by a three-standard-

deviation variation of xp in the direction of np, with a predetermined, fixed “local”

width (e.g. 15 pixels). The actual extent of edgelets along the edge is undefined and

unestimated, as they are local features, so this fixed search region is adequate for rea-

sonable changes in viewpoint.

5.3.2 Search

The set of edgels in the prediction region with gradient direction similar to np is re-

covered from the image. Straight segments within this local set of edgels are taken

as possible observations of the edgelet. A variant of the Hough transform finds such

segments (Figure 5.1).

First, the edgels are binned according to their quantised gradient angle θ, relative to

the direction np. Angle bins of width π/100 radians are sufficient, as any edgels with

orientation more π/10 radians away from np are discarded. Peaks in total edgel count

are computed by convolving the bins with a low-pass filter. Such peaks reflect many

edgels with a common gradient direction.

For each peak group of edgels, a histogram of edgel location component along the

direction of the bins’ average gradient angle is constructed. These displacement his-

tograms have bins of width ∼1 pixel. The two kinds of histogram – angle and dis-

placement – correspond to the two dimensions of the angle-radius representation of
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Figure 5.1: Edgelet observation: The coordinate frame of the search region, given by
xp and np, is computed from the current edgelet estimate. Edgels are detected in the
region and grouped into straight segments, to which slope-intercept lines are fitted

the Hough line transform. Thresholding the peaks in the radius histograms yields

subsets of edgels that form straight segments in the region.

5.3.3 Observation Representation

For each straight-segment edgel set found in the search region, the edgel locations {ei}
are mapped into the camera plane through cam−1, giving {ei

c} . The image coordinate

frame described by xp and np is also mapped into the camera plane, giving xc and nc

respectively.

Each edgels offset in the direction of nc from the line given by xc is computed as

(ei
c − xc)

T nc. A least-squares intercept-slope line, y = b + mx, is fitted to the resulting

offsets. The parameters (b,m) of these lines are the 2D observations used to update

the pose and landmark estimates of the filter. The position uncertainties in {ei} are

mapped through these transformations, yielding covariance in the line parameters

(b,m) for each fit. The innovation of an observation hypothesis (for use in updates) is

then the difference between the observed intercept-slope and the predicted intercept-

slope, computed from xc and nc.
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In the simplest case, only one edgelet observation hypothesis is found by active search.

When multiple hypotheses are found, the observation closest to the predicted edgelet

location could be taken as the single hypothesis. However, clutter around the edgelet

in the image can lead to incorrect data association. To avoid spurious edgelet ob-

servations, all of the observation hypotheses in each frame are considered together,

deciding maximum likelihood data association as described in Section 5.6.

5.4 Finding new Edgelets

The map of the environment is initially empty, except for fiducial landmarks used to

bootstrap the system. New edge landmarks must be acquired to populate the map

as the camera moves. As with interest point detectors used for selecting point land-

marks, an edgelet selection algorithm should yield edgelets that can be easily localised

in subsequent frames. It must also be efficient, so as not to burden the real-time op-

eration of the system. This section describes a simple, effective, and efficient method

for choosing edgelets to track. The method yields the locations of short, straight edge

segments that are well-separated from nearby edges of similar direction.

First, all the edgels in the image with a gradient magnitude that is maximal along

the direction of the gradient are identified. The output of the first steps of the Canny

algorithmCanny (1986) is sufficient for this stage. The edgels are considered in subsets

determined by placing a grid of a fixed size over the image. A grid with boxes of size

16 × 16 pixels works well for a 320 × 240 image. All subsequent processing happens

within each grid subset.

For a subset of edgels {ei}, the average second moment, M, of the gradients gi at the

edgels is computed:

M =
〈

gig
T
i

〉

(5.4)

The eigenvectors of M describe the dominant directions of intensity change in the

image patch. For a patch containing a single edgelet, the eigenvector corresponding to
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the larger eigenvalue should be normal to the edgelet. Let this dominant eigenvector

be n̂. For each edgel, the angle θ between n̂ and the edgel’s gradient satisfies

cos θ = gT
i n̂/ |gi| (5.5)

Those edgels with gradients in agreement with n̂ are selected by choosing a minimal

cos θ and thresholding:

(

gT
i gi

)

cos2 θ >
(

gT
i n
)2

(5.6)

For all edgel locations ei with gradient in agreement with n̂, consider the distribution

of location in the direction of n̂, given by

bi = eT
i n̂ (5.7)

The mean and variance of {bi} describe the location and agreement of edgels along the

dominant direction. For a grid element with one clear, single straight edge, the vari-

ance will be on the order of a single pixel. Thresholding on this variance identifies grid

elements containing candidate edgelets. Note that edgels with gradient directions not

similar to the dominant gradient direction do not affect the edge-normal variance, as

they are culled from the calculations early. Thus, a grid patch can contain two orthog-

onal segments and the stronger one will be chosen as a candidate edgelet. Each grid

element contributes either one or zero candidate edgelets, with associated location,

direction, and strength.

The algorithm accepts well-separated short straight segments, but rejects grid ele-

ments that might contain easily confused edge portions. Figure 5.2 shows a natu-

ral and a constructed example of this criterion in action. The rendered indicators are

normal to each detected edgelet in the direction dark-to-light, and their length is pro-

portional to the strength of the edgelet. The double lines are rejected by the edgelet

selector because they are too close, and might be confused in a search.

On a Pentium IV 2.8 GHz workstation, using grid elements of size 16×16, the entire

algorithm, including non-max-suppressed edgel detection, processes a typical 320 ×
240 grayscale image in 2-3 ms, yielding up to 300 edgelets. Candidates in the image

sufficiently distant from all recently observed landmarks are chosen as edgelets.
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Figure 5.2: Output of the candidate edgelet detection algorithm

Edgelet selection is further guided by choosing edgelets with normal direction orthog-

onal to the image motion due to camera translation. This property can be computed

using the current estimated camera translational velocity. The depth of such edgelets

is likely to be recovered more rapidly, because the aperture problem is avoided.

5.5 Initialising Edgelets

A new edgelet cannot be added to the map as a fully-initialised landmark described

in Section 5.2.2 until enough is known about its location and direction to make its esti-

mate Gaussian. While its location and direction in the image plane is well-determined

from one observation, the components along the viewing ray are unknown. Thus,

the landmark must remain partially initialised until all of its dimensions are well-

represented by a Gaussian. The situation is analogous to that of partially initialised

points (4.5), and the linearity of an inverse depth observation model applies.

A partially initialised edgelet is parameterised in its initial observation frame with

inverse depth. That is, instead of world coordinates x = (x, y, z), the edgelet position

is given as x∗ = (u, v, q), where (u, v) is the position of the edgelet in the camera plane

and q = z−1 (inverse depth), all with respect to the first camera pose from which the

landmark was observed. Just as d̂ is the unit differential of x along the edge, the unit
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differential d̂∗ of x∗ along the edge parameterises the direction of partially initialised

edgelets. The Jacobians of the inverse depth edgelet observation model are shown in

Section A.2.2.

However, even the inverse-depth representation is not adequate when a new edgelet

has been observed only once. After only one observation, there is no information

about inverse depth or its derivative, so the representation is not Gaussian. The un-

scented transform (Julier & Uhlmann (1997a)) is used in this very initial phase to

combine the first observations of an edgelet until its inverse-depth representation is

Gaussian. This almost always happens in two frames.

The rest of the partial initialisation proceeds just as it does for point landmarks. As

the edge landmark is repeatedly observed in subsequent images, the estimates of x∗

and d̂∗ are updated, in each particle, using the EKF framework. The conditional in-

dependence of the estimates in each particle means that the EKF update is computed

independently on each (low-dimension) estimate.

When the estimate converges so that it is well-represented as Gaussian in Euclidean

world coordinates, a change-of-variables is performed using the unscented transform,

and the landmark’s mean and covariance is thereafter expressed in world coordinates

x, d̂, and P. Given non-degenerate camera motion, new edgelets are usually fully

initialised in fewer than ten frames. Each particle maintains a separate estimate of each

landmark, so the change-of-variables occurs independently, sometimes at different

times and with different results for different particles.

Just as with point landmarks, partially-initialised edgelets help to constrain the cam-

era pose in the pose update stage of the filter update. Although observations of new

edgelets cannot constrain the camera pose until the third observation (because of the

degrees of freedom of the edgelet), once the inverse-depth representation is valid, the

edgelet participates fully in the pose constraint process described above. Indeed, the

system can operate well without ever changing variables to Euclidean world coordi-

nates; the change-of-variables simply permits more efficient operation.
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5.6 Robust Data Association

While point features have a highly distinct appearance model given by a textured

patch, edges are characterised only by the direction of their intensity change from low

to high. If an edgelet’s prediction uncertainty is large, there may be several possible

matching edges in the image search region, making data association between image

observation hypotheses and landmarks ambiguous. The ambiguity can be resolved

by choosing the set of associations that has the maximum likelihood given the current

estimates of poses and landmarks.

However, for m observations, there are 2m possible association combinations to con-

sider. This number grows when multiple hypotheses exist for some observations. Ran-

dom sampling consensus (RANSAC, Fischler & Bolles (1981)) can be used to sample

from the subsets. The observations are sampled, with replacement, k at a time (k = 4

for this chapter), yielding subsets {Si}.

The likelihood of a given edgelet observation is computed in measurement space.

Each observation is a 2D Gaussian distribution (zi,Ri) of intercept-slope parameters

relative to the predicted edgelet under an uncertain camera pose. The innovation

covariance is computed by projecting the edgelet and pose uncertainty into this mea-

surement space and adding Ri. Evaluating the resulting zero-mean Gaussian density

function at the observation’s mean yields the observation’s likelihood under the hy-

pothesis.

For a given Si, the posterior estimate Pi of a chosen particle’s pose is computed. Each

Pi is tested by evaluating the combined likelihood of the whole set of observations

under it. For each observed landmark with more than one observation hypothesis in

the frame, the most likely hypothesis under Pi is used for the test. If the likelihood

of the best observation for a given landmark is below a threshold, the observation is

considered an outlier, and the threshold likelihood is used in place of the observa-

tion’s likelihood. Combining the likelihood over all observed landmarks for a given

Pi yields a score, and a set of associations, for Si.
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Figure 5.3: An example of outlier detection performed by the robust data association
algorithm

The scoring process is repeated with many randomly sampled subsets Si of k obser-

vations. After a fixed number of tries, the maximum-likelihood set of inliers is taken

as the data association, and that set is used to update all pose and landmark estimates.

Figure 5.3 shows an example with many multiple-hypothesis observations as well as

a detected outlier. . The thick red ’×’ indicates an observation determined to be an

outlier: the active search algorithm has found the wrong edge in the image. Note

that many observations have multiple hypotheses (shown as multiple blue segments);

robust data association has chosen the most likely hypothesis in each case.

The number of random subsets tried is limited by computation time; 30 tries gives

good experimental results without requiring excessive time. Even when only one

observation hypothesis is found in the image for each observation, there are in fact

two possibilities for each observation: inlier or outlier (the null hypothesis). This

data association framework greatly improves the reliability of the system when view-

ing cluttered scenes, when partial initialisation gives spurious estimates, or when the

static-world assumption is violated. Furthermore, the formulation is independent of

landmark type, so it can be applied to points, edgelets, or both simultaneously.



5.7 Results 109

5.7 Results

An implementation of monocular SLAM with edgelets is evaluated with the same

hardware used for the results of Chapter 4. The system runs at frame rate (30Hz)

while observing in excess of 40 edgelets each frame, and choosing among 30 data

association RANSAC hypotheses. The average search time for locating an edgelet in

a video frames is 0.1 ms. This cost of finding the landmark is exceeded by the cost of

incorporating the observations into the filter estimates, which currently requires ∼0.2

ms per landmark for 80 particles. The tracking is noticeably more reliable when using

the RANSAC-based maximum-likelihood data association described in Section 5.6.

Figure 5.4 shows the result of mapping a real planar scene. The system accurately

captures the scene geometry: The mean displacement of the edgelet centres from the

ground plane is 8.58·10−5m. The standard deviation is 2.5mm. The standard deviation

of edge angles out of the plane is 0.0331rad, or 1.9°.

Mapping simple geometric structure gives a qualitative check of the edgelet estima-

tion process. Figure 5.6 shows a small, artificial desktop scene and a portion of the

map, reflecting the orthogonal edges of the items. Figure 5.5 shows additional qualita-

tive mapping results from a scene with more complex structure. The system correctly

captures the structure of the cabinet top and face. The locality property of edgelets,

along with the detection algorithm, also allows the system to track curved edges, as

shown in Figure 5.7.

Figure 5.8 shows the results of a 195 second run in a dining room scene (Figure 5.9).

The sequence was captured live from the camera, not pre-recorded and processed

from disk. The fiducial grid is used for initialisation. The constructed map contains

196 edgelet landmarks. Between 30 and 50 observations are made each frame, all

while running at frame rate (including graphic display and data output). The objects

on the table are clearly represented, including the curved hot plates. The estimated

trajectory of the camera during the run is shown in Figure 5.10. The trajectory is not

post-processed; it is the concatenated output of the filter at every time step. Even



5.7 Results 110

Figure 5.4: A planar scene with 51 edgelets

Figure 5.5: Edgelets of varying orientations

though the trajectory covers only one portion of the table, the positions and orienta-

tions of distant edgelets (such as those on the vertical walls) are correctly estimated.

5.7.1 Discussion

This chapter has defined edgelets and established how to select, observe, initialise,

and estimate them in the context of particle-filter SLAM. The selection algorithm has

minimal computational cost and delivers short, straight segments in the image, well-

separated from edges of similar orientation. The partial initialisation approach, us-

ing an inverse-depth representation, allows landmark estimates to be maintained in

EKFs even when the distribution is not yet Gaussian in world coordinates. Partially
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Figure 5.6: A scene with 3D structure, and the resulting map

Figure 5.7: Edgelets on curved surfaces

Figure 5.8: Map constructed from a 195s live run in a dining room environment, with
196 edgelets
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Figure 5.9: A dining room scene

Figure 5.10: Estimated camera trajectory for the dining room sequence
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initialised edgelets participate fully in the pose refinement process crucial to the oper-

ation of the particle filter.

The indistinct nature of edge image features makes data association more difficult

than with point landmarks. This problem is addressed by a robust data association

method that evaluates all observations in a frame simultaneously. Using MLESAC

and existing landmark estimates, unlikely hypotheses are discarded.

The presented system shows that edges can be successfully tracked and mapped in

an active-search monocular SLAM setting. The SLAM operation is accurate and ef-

ficient, capturing the edge geometry of the environment while running at frame rate

with hundreds of landmarks. Furthermore, the use of only local portions of possibly

extended edges yields a framework flexible enough to map curved intensity changes.

While edge landmarks are useful for capturing higher-level geometry in scenes and

when point features are scarce, they need not be used in isolation. Future work should

examine how points and edgelets can be used in tandem. The current implementation

already permits this, but the difficulty lies in determining when points rather than

edges should be selected, and vice versa. A SLAM system might also wish group

together individual landmarks (points and edgelets) that are structurally linked into

composite entities, to be represented as a unit.



6
SLAM as a Graph of Local Maps

6.1 Introduction

The monocular SLAM system presented in Chapter 4 and extended in Chapter 5 per-

mits frame-rate mapping of hundreds or thousands of landmarks, and yields accurate

localisation in small environments. Nonetheless, the map and trajectory estimates

do not always converge to their true values, leading to lost tracking and incorrect

maps. The culprit is the same inconsistency that plagues EKF SLAM, discussed in

Section 2.3.2.

Fundamentally, the problem is not that the pose or structure estimate of the filter is

inaccurate. After all, observations are noisy and the motion model is approximate,

so temporary inaccuracy is impossible to avoid during SLAM. Rather, the problem is

that the uncertainty in the estimate is underestimated. The filter is too confident in its

inaccurate trajectory or map to allow the state estimate to converge to the truth.
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This chapter further discusses the nature of the consistency problem in SLAM in gen-

eral, and in monocular SLAM in particular. The causes of inconsistency motivate a

SLAM algorithm that maintains a graph of local, statistically independent maps. The

local maps are updated with a focus on preserving consistent estimation, factoring out

significantly nonlinear constraints into the graph edges. Similarly to other submap-

ping strategies, bounding the complexity of local maps also permits efficient operation

with many landmarks. The system effectively factors the estimation problem into an

efficient recursive component and an iterative optimisation component.

6.1.1 Contributions

The monocular SLAM method presented in this chapter is called Graph-SLAM in the

sequel. [Note that, despite the name, this is not directly related to the work by Thrun

& Montemerlo (2006), which is discussed below.] This chapter documents the follow-

ing contributions:

• Efficient monocular SLAM with local maps represented in a graph

• Compact local mapping parameterisation with a nearly-linear observation model

• Nonlinearity measure to guide the use of image observations in updates

• Iterative graph optimisation, accounting for local and topological constraints

The remainder of this section reviews the consistency problem in SLAM, and discusses

related work. Section 6.2 describes the graph-based state representation of Graph-

SLAM. Section 6.3 details the local mapping procedure, Section 6.4 shows how the

graph is maintained during operation, and Section 6.5 describes how the graph edges

are iteratively optimised to satisfy structure and cycle constraints. Section 6.6 presents

performance and consistency results for simulated and real data, comparing to EKF

SLAM, FastSLAM, and bundle adjustment.
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6.1.2 Consistency

As described in Chapter 4, the FastSLAM algorithm factors the SLAM problem by

conditioning landmark estimates on samples drawn from the trajectory distribution.

These samples are maintained by a modified particle filter. In order for the factorisa-

tion to consistently represent the underlying distribution of structure and motion, the

particle set must encode the full uncertainty in the trajectory. However, as time passes,

and pose uncertainty relative to a fixed coordinate frame grows, the bounded number

of particles inevitably fails to fill out the tails of the distribution.

This failure is shown empirically by Bailey et al (2006b). For any fixed number of

particles, the filter acts as a non-optimal local search in the state space. After a short

period of time passes, the search cannot adequately explore the space, so the estimate

is no longer Bayesian and the filter becomes inconsistent. Increasing the number of

particles increases the accuracy of the result, and slightly delays the inconsistency, but

without an exponential growth in the number of particles over time, the algorithm

cannot be consistent.

As discussed above in section 2.3.2, the EKF SLAM algorithm becomes inconsistent

due to linearisation errors. Such errors are mitigated by using a coordinate frame

local to the vehicle, iterating the update step of the EKF to achieve more accurate lin-

earisation, or using the Unscented Kalman Filter (Julier & Uhlmann (1997a)) to avoid

explicit linearisation. But these techniques only delay the onset of inconsistency. Bai-

ley et al (2006a) and Castellanos et al (2007) argue that the only way to limit inconsis-

tency in SLAM is to maintain independent submaps, so that any local inconsistency

in one submap does not escape to other submaps and cause global inconsistency.

6.1.3 Related Work

Motivated by the avoidance of inconsistency, Graph-SLAM is closely related to previ-

ous submapping methods. Several SLAM systems in the robotics literature represent
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state using multiple local coordinate frames (Bailey (2002); Bosse et al (2004); Castel-

lanos et al (2007); Leonard & Newman (2003); Lisien et al (2003)).

In particular, the graph of local maps described below is similar to the formulation

of Network Coupled Feature Maps (NCFM, Bailey (2002)) and the Atlas framework

(Bosse et al (2004)). In both of these systems, submaps are statistically independent

of each other, and in the case of Atlas, the local mapping technique can vary from

one submap to another. Submaps are connected in a graph structure, with map-to-

map coordinate transformations associated with graph edges. Landmark and pose

estimates can be propagated through the graph from one map to another.

NCFM uses the common landmarks estimated by two local maps help constrain the

transformation estimate between the maps. Atlas, on the other hand, requires no com-

mon structure between submaps, so depends on motion estimates when moving be-

tween submaps to decrease the uncertainty in the edges. When cycles are present,

different paths through the graph between two submaps might compose to different

transformations. Neither NCFM nor Atlas apply graph-wide constraints online to en-

force that edge cycles compose to the identity transformation, though Atlas results are

often shown with a post-optimised graph.

The Graph-SLAM approach can also be viewed as a hierarchical bundle adjustment

structure-from-motion method. Multiple observations sharing a nearly-linear obser-

vation model are coalesced into nodes containing high-dimensional, rich observations,

and the relations between these high-dimensional observations are optimised at the

global level. Thus optimisation of the linear parts of the parameter space proceeds

recursively, permitting much more efficient global optimisation than standard bundle

adjustment.

Thrun & Montemerlo (2006) present a bundle adjustment formulation confusingly

called “GraphSLAM”. Cast in terms of robot localisation and mapping, the paper ac-

tually describes the standard bundle adjustment algorithm, where structure param-

eters are eliminated and solved as a function of pose parameters. Iterative nonlinear

optimisation yields a minimum on the graph energy, just as the nonlinear optimisation
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of bundle adjustment minimises reprojection error. Sharing the limits of global batch

optimisation in general, the method cannot run on large graphs efficiently enough to

allow online operation.

Hierarchical bundle adjustment has been previously explored. The method of Fitzgib-

bon & Zisserman (1998), discussed in Section 2.2.1, first estimates trifocal tensors over

view triplets, then performs a full bundle adjustment over subsets of increasing size.

The system described by Mouragnon et al (2006b) and Mouragnon et al (2006a) per-

forms bundle adjustment over a constant number of recent key frames, which are

chosen sparsely from the set of all views using simple heuristics. While performing

such temporally local bundle adjustment improves the accuracy of the result, for suffi-

ciently large sequences it will not converge to the solution given by a full optimisation.

Recent work by Klein & Murray (2007) (published after the work of this chapter) se-

lects key frames from video, performing full Levenberg-Marquardt bundle adjustment

while tracking the camera pose relative to the current map. The state consists of the

poses of all of the key frames and the parameters of all of the 3D points used as land-

marks. Thousands of interest point correspondences are established between nearby

key frames, providing the observations for the optimisation. Small local subsets of the

parameters are optimised alone before the whole state is optimised jointly. The consis-

tency of the algorithm is not tested, though it successfully closes medium-size loops,

thanks to its highly accurate mapping. The brute-force nature of the optimisation lim-

its useful operation to about 150 key frames, with which small indoor areas can be

adequately represented. Such areas are the target domain of the system, in which it

yields excellent accuracy. However, the pose estimation does not take into account

landmark uncertainty, so a proper measure of uncertainty for the pose estimate is not

available at each time step.

The key frame mapping method of Konolige & Agrawal (2007) (published concur-

rently with the work of this chapter), like the work of Klein & Murray (2007) also em-

ploys iterative global optimisation over selected poses, but factors out the landmark

state earlier in the process. Only relative pose measurements between key frames are

maintained, in graph form. A sparse bundle adjustment optimises the inter-frame
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transformations. This approach is similar to the one below, except that the interframe

measurements are not updated with new observations of the joining features. How-

ever, multiple adjacent frame-to-frame pose measurements are collapsed together,

which can be seen as a similar refinement. The system operates well in large out-

door environments, especially when using a stereo camera, but does not quite reach

30Hz processing speeds.

6.2 Graph-based State Representation

Graph-SLAM represents the map state in a graph. Each node of the graph contains a

local map, built from a subset of all observations, with its own local coordinate frame.

Each edge of the graph represents an uncertain transformations between the coordi-

nate frames of its endpoints, constrained by estimates of common landmarks in the

endpoint maps. Because each local map has its own scale, independent from the maps

of other nodes, the transformations represented by edges must include scale change.

6.2.1 Local Maps

Each local map estimates landmark parameters using a subset of all observations

made from video images. These subsets are disjoint across all submaps, so a local

map’s estimate is statistically independent from all other maps. Camera pose is not

estimated as part of the local state, but is always represented with respect to a local

coordinate frame.

A local map estimate is represented by a high-dimensional Gaussian, encoding the

mean and covariance over all landmark parameters in the map. In order for this rep-

resentation to be a consistent approximation to the actual state distribution, the ob-

servation model should be as linear as possible, as discussed in Section 4.5.1. Thus

the inverse depth parameterisation is a natural choice for landmarks in a local map.
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Figure 6.1: Observations are coalesced into nodes, each with a local coordinate frames.

Further, in order to accurately represent the lack of depth information when initial-

ising landmarks, the inverse covariance (information) matrix is stored instead of the

covariance. Zeros in the diagonal of this matrix encode total lack of information about

the corresponding parameter (whereas zeros in the covariance diagonal imply perfect

knowledge). The mean vector is stored directly, in inverse depth coordinates.

The landmark estimates are highly correlated within a local map, in contrast to their

conditional independence within a FastSLAM particle. If the EIF or similar filter ma-

chinery is to be used to maintain the estimates, the computational cost grows quickly

with the dimension of the state. In the application of inverse depth parameterisation

to landmark initialisation in FastSLAM, the pose relative to which the inverse depth

coordinates are expressed is fixed. In that case, the trajectory is sampled, so no un-

certainty or correlation in the pose parameters needs to be represented in the state.

In an EKF or EIF, however, the inverse depth coordinate frame parameters and their

uncertainties and correlations need to be folded into the estimation. Using the repre-

sentation described in Montiel et al (2006), this requires six parameters per landmark.

In fact, this uncertainty in the coordinate frames for the each landmark’s inverse depth

parameters need not be represented. To motivate this conclusion, consider the case of

Euclidean landmark parameters. In a simple scenario, all coordinates are represented

in the same global coordinate frame. However, a different arbitrary, fixed coordinate



6.2 Graph-based State Representation 121

system could be used for each landmark, without any loss of correctness. Such co-

ordinate systems can be chosen randomly, and as long as they are fixed, estimation

proceeds as normal, though the observation model is distinct for each landmark.

Likewise, distinct fixed coordinate systems can be used for landmarks in the inverse

depth parameterisation. Instead of generating them arbitrarily, they are chosen so that

the observation model is nearly linear. Using the camera pose estimate C0 at the first

observation of the landmark to define the landmark’s coordinate frame (relative to

the local map) confers this benefit. The pose estimate is copied and stored with the

landmark’s mean. It is not part of the state vector, so it does not change with subse-

quent filter updates. If C0 is sufficiently accurate, the observation model will remain

linear for small camera displacements. If not, then the observation model will become

more nonlinear, but the estimation is otherwise correct. Fixing these per-landmark

coordinate frames halves the state dimension in the local map from 6N to 3N for N

landmarks.

From the viewpoint of bundle adjustment for structure-from-motion, each local map

can be seen as a high-dimensional observation, constructed from 2D image observa-

tions coalesced by the local filter (see Figure 6.1). Because all image observations are

statistically independent of each other, and each local map is built from image observa-

tions used by no other maps, the “big” observations are also statistically independent.

The goal of the partitioning of observations into multiple local maps is to keep the

observation models as linear as possible, so that intra-node mapping is as consistent

as possible. This is described in more detail in Section 6.3.2.

6.2.2 Camera Pose

The camera pose estimate is maintained independently from the landmark estimates.

A constant velocity model (see 4.3.2) is used to approximate camera motion, so the

pose estimate is 12 dimensional: 6 dimensions for the pose and 6 for the velocity in

the tangent space. All observations made from each video image are used to refine the

camera pose by nonlinear optimisation of the pose parameters (Section 6.3.3). Unlike
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in EKF SLAM, the map update process (Section 6.3.5) does not incorporate the pose

information given by the dynamic model, to avoid spurious information gain when

the model is incorrect. In fact, all of the information in the pose estimate is ignored in

the update process, which uses the mean pose only as a starting point for nonlinear

optimisation.

The dynamic model serves primarily to help tracking succeed by improving active

search (Section 6.3.2). It could be replaced by a more complex model, or it could in-

corporate visual odometry (Nistér et al (2004), Klein & Drummond (2005)) or inertial

measurements (Klein & Drummond (2002)) for better predictions and more robust

observation. However, the simple model performs well enough for smooth motions.

As the graph is traversed during the course of SLAM, the pose estimate is transformed

from one local coordinate frame to another through the edges. The state mean and

uncertainty are modified according to the equations given in Section 6.2.3.

6.2.3 Map-to-Map Transformations

The edges of the graph explicitly represent the transformations between the coordi-

nate frames of nodes, induced by estimates of landmarks common to the two end-

points of the edge. Because the scale within each node is a free parameter, the trans-

formations must represent scale changes as well as rigid transformations. Thus the

edge transformations are scaled Euclidean transformations – i.e., similarity transfor-

mations. Edges are bidirectional; the transformation and its inverse, along with re-

spective uncertainties, are both computed and stored whenever the edge estimate

changes.

A similarity transformation S = [(R, t), s] is given by a rotation and translation (R, t) ∈
SE(3) and a scale s ∈ R. A Cartesian point x is mapped via S as

S(x) ≡ s (Rx + T ) (6.1)
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This has a matrix representation similar to that of SE(3):

S =

(

R t

0 1

s

)

(6.2)

In this representation, the formula for the inverse is obvious:

S−1 =

(

RT −sRT t

0 s

)

(6.3)

=
[(

RT ,−sRT t
)

, s−1
]

(6.4)

As with rigid transformations, differentials and covariances of similarity transforms

are represented in the tangent space around the origin, and mapped onto the manifold

via the exponential map:

exp
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exp
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u

ω

)

, eσ

]

(6.5)

The differentials of this mapping are easily computed by extending the Jacobians of

the exponential map in SE(3).

The edge transformations are used to propagate landmark and pose estimates through

the graph. Propagation of landmark estimates is straightforward; they can either be

pushed through the unscented transform or by mapping the mean through the trans-

formation and transforming the covariance with the Jacobian.

Transforming a camera pose through an edge means something different. The process

is easily defined if the edge transformation S has unit scale (s = 1, so S ∈ SE(3)): A

camera pose C = (RC , tC) ∈ SE(3) should map a point y ∈ R
3 to the same thing to

which the transformed camera pose maps the transformed point:

T [C] · (T · y) = C · y
T [C] = C · T−1 (6.6)

But T [C] ∈ SE(3) only if T ∈ SE(3). When s 6= 1, the transformed pose should map

T ·y to a scaled version of C ·y by renormalising the composite transformation to unit
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scale:

T [C] ≡ [(I,0) , s] · C · T−1

=

(

I 0

0 1

s

)

·
(

RC tC

0 1

)

·
(

RT −sRT t

0 s

)

=

(

RCRT s
(

tC − RCRT t
)

0 1

)

(6.7)

From this formula, it is clear that vectors in the tangent space of C are transformed

through T by simply multiplying their translation components by s.

6.3 Local SLAM

6.3.1 Overview

This section describes the SLAM algorithm within a local map. At the beginning of

each time step, camera pose is represented relative to the local coordinate frame of

the active node. Observations of landmarks are gleaned from active search, and the

pose estimate is updated using the observations. Then a new active node is chosen,

into which some or all of the observations will be fused. The choice of active node is

driven by a measure of the nonlinearity of the observation model.

During the local mapping process, the graph structure is held constant. Graph main-

tenance occurs only at the end of the time step, after the observations have been used

to constrain the camera pose and update a local map. The extra-local machinery is

explained in Section 6.4.

6.3.2 Active Search

When an image is retrieved from the camera, the time step begins. The Gaussian

pose estimate in the active node’s coordinate frame is modified according the noisy
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Figure 6.2: Active search regions for a frame from a desktop sequence. The search
ellipses are yellow, and successful observations are shown with green boxes. The ob-
servations are of different scales in the image because of their distinct warps for the
current pose

dynamic model, yielding a prior estimate of pose at the current time. This prior gives

a starting point for finding landmark patches in the image.

Each landmark has an associated simple appearance model in each node where it is

estimated, based on a small image patch acquired when the landmark is first observed

in the node. As in Section 4.4.1, the appearance model is made somewhat invariant to

viewpoint change by warping the patch before searching the image. Using the prior

pose estimate, the displacement from the pose where the landmark was first observed

dictates the rotation and scaling of the patch, while the distortion due to the nonlinear

camera model is approximated by small affine warping. For efficiency reasons, the

warp is computed from the mean landmark parameters and mean pose parameters,

and held constant over the search region in the image.

The region is searched for the patch using ZNCC, and a quadratic form is fitted to

the correlation score surface around the peak, giving an estimate of registration uncer-

tainty. The result is a 2D observation of the landmark. An example video image with

search ellipses and successful observations is shown in Figure 6.2.
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The predictive search is not based solely on information in the active node; infor-

mation about the landmark from nearby nodes in the graph is also incorporated. A

distance-limited breadth-first search of the graph, starting from the active node, yields

a tree connecting nearby nodes. A landmark’s estimates are propagated through this

tree into the active node (the root). This propagation progresses in a depth-first man-

ner, with each node first collecting estimates from its children in the tree before trans-

forming the combination through the edge to its parent. Thus the uncertainty of each

coordinate transformation and landmark estimate is reflected properly in the result.

When the estimates reach the the active node, any local information about the land-

mark is added to the prediction. This yields a posterior estimate of the landmark in the

local coordinate frame, conditioned on the information in all nodes of the tree. This

posterior is projected through the observation model, accounting for the uncertainty

in the current camera pose relative to the active node. The result is a more constrained

search region in the image than would be given by using only the local landmark

estimate.

Thus, even if a node does not have a direct estimate of a landmark, or even if its es-

timate is very uncertain, by combining the information from nearby nodes, a feasible

prediction can be made for the landmark. Note that the internal state of all nodes in

the tree remains unchanged by this process; it serves only to aid the active search. This

mechanism also allows the active node to increase the number of landmarks it shares

with nodes to which it is connected. Landmark estimates from connected nodes are

transformed through the connecting edges and into the image, and successful obser-

vation allows them to be added to the local map’s filter. As edge transformations are

constrained by estimates of common landmarks, this process helps improve the local

edge constraints.

6.3.3 Pose Update

Once a set of 2D observations have been extracted from the image, they are used to

update the pose estimate. Because the pose estimate is maintained independently
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from the local structure, no correlation is maintained between pose and landmarks.

The pose update is formulated as a nonlinear optimisation of the pose parameters that

minimises the reprojection error of the latest observations given the current estimates

in a local map.

A subset O of the landmarks in a map is observed in a given timestep. An iterative

Gauss-Newton optimisation adjusts the pose C to jointly accommodate the observa-

tions zO given the map’s estimate of landmark parameters. In each iteration, the dense

covariance block matrix PO corresponding to the observed landmarks xO is projected

through the observation model h into the camera plane, and block-diagonal measure-

ment noise RO is added. This gives the innovation covariance S in the camera plane:

Jx ≡ ∂h(xO, C)

∂xO

(6.8)

JC ≡ ∂h(xO, exp(ǫ) · C)

∂ǫ
(6.9)

S = JxPOJT
x + RO (6.10)

The innovation information (inverse covariance) is projected into pose parameter space,

along with the innovation vO, weighted by the information. Then a pose update incre-

ment δ in the tangent space is computed by solving the linear least squares equation:

vO ≡ zO − h(~xO, C) (6.11)

JT
CS−1JC · δ = JT

CS−1vO (6.12)

The equation can be efficiently solved using the Cholesky decomposition (for comput-

ing both S−1 and δ). The residual error r under the pose C is given by the innovation

and its covariance:

r = vT
OS−1vO (6.13)

At each iteration the pose is updated using the exponential map and left multiplica-

tion:

C ′ = exp δ · C (6.14)

Convergence is confirmed by checking the decrease rate of the residual r after each

iteration. The covariance of the resulting estimate is given by the inverse information:

[

JT
CS−1JC

]−1
(6.15)
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Because some landmarks might have estimates (also or only) in nearby nodes besides

the active node, this optimisation can be done independently in each local map with

at least three observed landmarks. The resulting pose estimates are transformed back

through the graph and combined with the motion model in the current active node.

This combination (by multiplication of Gaussians) gives a posterior distribution over

pose that accounts for all nearby estimates of observed landmarks.

6.3.4 Choosing the Active Node

Already used to update the pose, the observations should also be used to update a

local map. In order to avoid inconsistency, the landmark’s observation models should

be as linear as possible for the map update. This is accomplished by quantifying the

nonlinearity of the model in the landmark parameters and choosing a local map where

the largest subset of the observations have sufficiently linear models.

A nonlinearity metric of the observation model for an uncertain landmark estimate

x ∈ (x̂,P) should reflect the difference between how the linearised model and the full

model project the landmark distribution into the measurement space. Let the camera

pose be C . The linearised model H is given by the first-order Taylor expansion of the

actual model h around the landmark parameter mean x̂:

Hx̂(x, C) = h(x̂, C) + Jx(x − x̂) (6.16)

The nonlinearity nl of h is reflected by the expected squared difference between pro-

jection by h and by H:

nl(h; x̂, C) = E
[

‖Hx̂(x, C) − h(x, C)‖2
]

(6.17)

This expectation can be approximated using the unscented transform on x ∈ N (x̂,P).

In order to evaluate the nonlinearity of the observation model in the presence of un-

certain camera pose, another unscented transform should be layered on top, sampling
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sigma points {Ci} from the pose distribution C ∈ N (Ĉ,Σ) to compute expectation:

nl(h; x̂, C) ≈ E[nl(h; x̂, Ci)] (6.18)

Note that the nonlinearity is being measured only with respect to the landmark pa-

rameters, not the camera parameters. The second unscented transform serves only to

compute the expected landmark-wise nonlinearity over the distribution of poses.

In this formulation, landmarks with very small uncertainty will have nearly-linear

observation models, because the displacements of samples from the mean are all small

in measurement space. This is intuitively correct, because a first-order approximation

Taylor expansion of a function about a point will always perfectly match the function

at that point.

The new active node is chosen from the current active node and all nodes connected to

it. Each node’s suitability is evaluated by considering the nonlinearity of the observa-

tion model for each of the observations of landmarks in each node. This requires first

transforming the (updated) pose estimate to each nearby node in turn, before evaluat-

ing nl for each observation. Comparing the value of nl to a fixed threshold determines

the admissibility of each observation. The node that admits the most observations is

chosen to become active. Observations not admissible in this new active node are not

used in the map update process, to avoid inconsistency.

If the new active node is different from the old one, the pose estimate is transformed

into the node’s coordinate frame before the local map is updated.

6.3.5 Local Map Update

Let O be a set of observations of landmarks L estimated in the local map, collectively

parameterised by mean vector x̂ and information matrix Λ. The local map update ad-

justs the pose and landmark parameters to satisfy both the prior and the observations.

Because the the observations have already been used to update the camera pose, the

information in the pose estimate must not be used in the local map update. Instead,
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the mean of the pose estimate is used only as a starting guess for nonlinear optimisa-

tion.

Each observation oi ∈ O is given by a 2D position and covariance in the camera plane,

(zi,Ri). The landmark index associated with observation o is l(o). Each landmark

lj ∈ L has a slice of the mean vector, xj , shortened to xoi
for the landmark associated

with observation oi. The residual to be minimised is the sum of landmark error relative

to the prior and observation projection error:

vi ≡ zi − h(xoi
, C) (6.19)

r(x, C) = (x − x̂)T Λ (x − x̂) +
∑

oi∈O

vT
i R−1

i vi (6.20)

This residual can be iteratively minimised using the Levenberg-Marquardt algorithm,

relinearising the observation model around the landmark means and current pose at

each iteration. Let the error vector e be the landmark differences from the prior stacked

on top of the observation innovations:

e =











x − x̂

v1

...
vm











(6.21)

The residual can be rewritten as a quadratic error function:

r(x, C) = eT











Λ 0

R−1
1

0
. . .

R−1
m











e (6.22)

Minimising this residual, for instance by conjugate gradients, results in optimised pa-

rameters x and C . A quadratic form is then fitted to the residual surface around the

minimum, by linearising the observation model at the optimised parameters. The

camera pose is marginalised out of this representation, yielding an updated landmark

information matrix Λ′ to go with the updated mean x.

Because the observation model is nearly linear, one iteration of Levenberg-Marquardt

or conjugate gradients optimisation is usually sufficient to reach the local minimum.
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Each iteration has cost quadratic or cubic in the number of landmarks. Marginalis-

ing out the camera from the information matrix, using the Cholesky decomposition,

requires cubic time in the number of landmarks in the local map. This cubic scaling

factor limits the maximum number of landmarks per node to 80, if efficient operation

is to be maintained.

Despite the cubic cost, this iterated information filter is chosen over the EKF (which

has O(N2m) update cost for m landmarks) because it permits a more faithful repre-

sentation of the information in the local map. New landmarks can be added to the

map before the update step with zero information in the inverse depth coordinates,

and their co-information with the other landmarks observed in the same frame is cor-

rectly computed and linearised. In the EKF, the lack of information about depth has

to be approximated by a huge variance, which also makes the update calculations

numerically ill-conditioned.

After the update, the same Cholesky decomposition is also used to compute the co-

variance matrix by inverting the information matrix. The gauge freedom in local scale

is fixed by adding a (temporary) prior in the scaling direction before inverting, and

then subtracting any remaining scale uncertainty using the Sherman-Morrison for-

mula (Press et al (1992)).

6.3.6 Landmark Management

If active search for a landmark fails more often than it succeeds, the landmark is re-

moved from the local map by marginalising out its estimate from the information

matrix and removing it from the mean vector. It is not removed from other maps

where it might be estimated. However, its identifier is added to a local list of “failed”

landmarks, so that the system does not continue attempt to observe it from within the

current node (by transforming it through an edge). This acts as a crude local occlu-

sion model, as the landmark is dropped from those nodes from which it cannot be

seen, and remains in those from which it can. After a fixed time period of ∼5 seconds,
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an identifier is removed from the list of failed landmarks, as the occlusion may be

temporary.

New landmarks are acquired by the system so that the number of landmarks observ-

able in the current pose remains at a target level (default 30). Landmarks are selected

using an interest point detector such as FAST (Rosten & Drummond (2005)) or Har-

ris (Harris & Stephen (1988)). Points maximally distant from existing landmarks in

the image are taken until the target quota is filled. A patch around each landmark

is stored as the landmark’s appearance model, and the landmark’s parameters (with

initial measurement noise) are added to the mean vector and information matrix. The

state is augmented before the update, so that the correlations between the new land-

marks and other landmarks observed in the same frame are correctly computed.

If few points are observable, and insufficiently many can be added to the current local

map due to its size bound, a new node will be created, as described in Section 6.4.2.

6.4 Graph Maintenance

After the pose estimate and active node are updated from image observations, graph

edges are updated and created. When exploring new territory, new nodes are created

as well.

6.4.1 Edge Updates

A graph edge encodes an estimated transformation between the local coordinate frames

of the nodes that are its endpoints. As shown in Section 6.2.3, these uncertain trans-

formations are represented as Gaussian distributions in the space of similarity trans-

forms. Each edge maintains two transformation estimates (and their inverses). Esti-

mate SL, with covariance ΣL, encodes the local constraints imposed by common land-
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marks in the endpoint nodes, and SG represents the result of the global optimisation

algorithm described in Section 6.5.

After the local map of the active node is updated, all locally-constrained estimates of

edges incident to the active node are refined. The local estimate is computed from

the estimates of landmarks Lc common to the endpoints of an edge (Figure 6.3). One

direction of the edge is modified by the refinement process, and the other direction

is then recovered by inversion (and appropriate transformation of uncertainty). The

node at the tail of the chosen direction is called the source, and the other endpoint is

called the target.

Iterated Gauss-Newton optimisation modifies the parameters of SL to maximise the

likelihood that estimates of landmarks Lc in the source node, projected through SL

into the target node, match with the target’s corresponding estimates. The more pre-

cise the local estimates of Lc in the source and target, the more precise the resulting

transformation estimate (the larger the eigenvalues of Sigma−1

L ). Because the land-

marks are highly correlated in each of the source and target node maps, the trans-

formation must be applied to all landmarks Lc simultaneously, mapping their full

covariance through the linearised transformation. The state block in the source and

target corresponding to Lc are effectively treated as high-dimensional observations

of structure. Straightforward application of Levenberg-Marquardt optimisation then

brings these observations into alignment by refining the edge transformation.

The optimisation is well-defined only when at least three landmarks are common be-

tween the nodes, but more shared landmarks provide more constraints and yield a

better transformation estimate. Because each iteration requires the decomposition of

a matrix with dimension 3|Lc|, the edge update becomes too expensive if there are

many common landmarks. This is mitigated by limiting the cardinality Lc. Selecting

only those shared landmarks that have well-constrained estimates in both the source

and target works well when |Lc| is large.
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Figure 6.3: Landmarks commonly estimated in two nodes determine a similarity
transformation between the nodes.

6.4.2 Node Creation

When not enough landmarks are observable, and there is not enough room in the ac-

tive node’s map to reach the minimum quota (default is 10), a new node is created.

Any observations made in the current video image are used to bootstrap the new

node’s filter, with additional landmarks acquired in order to reach the desired density.

An edge between the previous active node and the new node is created, with its trans-

formation estimate initialised to the last estimated camera pose in the previous active

node (with no scale change).

As landmarks are observed in the new node in subsequent time steps, the new local

map converges, and the edge transformation computed solely from shared landmarks

becomes well-conditioned. When this occurs, the estimate from the edge update algo-

rithm replaces the approximation from the camera pose when the edge was created.

New nodes could also be created to ensure more thorough use of observations. Re-

quiring a minimum number of admissible observations (in terms of Section 6.3.4) can

cause more frequent creation of nodes, resulting in a denser mapping of the environ-

ment. The cost is increased storage and computation, as the graph is more complex.
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6.4.3 Edge Creation

Edges explicitly represent the transformations between nodes induced by shared land-

marks. Thus, their creation need not be limited to coincide with node creation. When-

ever two unconnected nodes share a sufficient number of landmarks, they can be con-

nected with an edge in a well-defined manner.

At each time step, the nodes up to d > 1 hops from the active node in the graph are

checked for common landmarks with the active node. If a sufficiently large number

of landmarks is shared between a distant node and the active node (8 by default), an

edge is created between them. A starting estimate for the edge transformation is given

by composing the hops in the existing graph. The edge is immediately optimised

according the common landmark estimates.

By default, d = 2, so any edges added by this procedure create cycles of length 3 in

the graph. Setting d higher creates longer cycles, but requires many more nodes to

be examined. Cycles provide additional constraints on the edges of the graph, and

improve the results of the graph optimisation algorithm of Section 6.5. Also, adding

edges decreases the graph distance between the active node and other nodes in the

graph, allowing more landmarks from other nodes to be observed by active search in

the active node.

6.5 Graph Optimisation

When the graph is a tree, the most likely configuration of the edges is given by their

locally-optimised transformations. The only constraints on each edge are those im-

posed by the common landmarks in its two endpoints’ maps. When cycles are created

in the graph, further constraints can be expressed. The graph optimisation algorithm

computes, by nonlinear optimisation, the most likely edge transformations that satisfy

these constraints.
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6.5.1 Constraints

There are two type of constraints imposed on edges: local probabilistic constraints in-

duced by shared landmark estimates, and global topological constraints imposed by

graph cycles. The first type of constraint is discussed in Section 6.4.1; probabilistic esti-

mates of the same landmarks in the endpoint nodes determine a probabilistic estimate

(SL,ΣL) of the edge transformation that satisfies them. These locally-constrained

transformation estimates can be seen as springs between nodes.

The second type of constraint is topological: composing the transformations around a

cycle must give the identity transformation upon returning to the starting point. Each

cycle imposes such a constraint, and the constraint affects every edge in the cycle.

The constraints – probabilistic and topological – can be expressed together by writing

a probabilistic cost function over graphs that satisfy the topological constraint. First,

the difference vector between any two similarity transforms is expressed in the tangent

space, and the local error of an edge’s global transformation SG with respect to its local

estimate (SL,ΣL) can be given in terms of this difference:

diff(A,B) ≡ ln
(

A · B−1
)

(6.23)

local error(t) = diff(SG[t], SL[t])TΣ−1

L diff(SG[t], SL[t]) (6.24)

Cycles are most easily expressed in terms of a spanning tree on the graph, a set of

edges that is a tree and connects all nodes. Let E be the set of all edges. For any

spanning tree T ⊆ E, each edge e ∈ E \ T induces a cycle c(e) in the graph. The other

edges of the cycle, the ordered set path(e) = {c1(e), . . . , cn(e)}, point forward along

the path in the tree from the source node to the target node of e (Figure 6.4). The cost

associated with each cycle is the error between the path in the tree and the local spring

of the edge out of the tree:

tree path(e) = cn(e) · cn−1(e) . . . c1(e) (6.25)

cycle error(e) = diff(tree path(e), SL[e])T Σ−1

L diff(tree path(e), SL[e]) (6.26)
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Figure 6.4: Each cycle in the graph imposes a constraint on the edge transformations.
The transformations of edges around a cycle should compose to the identity

Putting these two kinds of error together, the total cost function g is then a sum of the

error induced by all edges in the tree with respect to their local springs, and all edges

out of the tree with respect to their cycles:

g(E,T ) =
∑

t∈T

local error(t) +
∑

e∈E\T

cycle error(e) (6.27)

The cost is proportional to the negative log-likelihood of the graph with the non-tree

transformations set so that cycles compose to the identity transformation.

6.5.2 Constraint Satisfaction

Satisfying the constraints requires first identifying cycles in the graph. A breadth first

search starting at the active node builds a spanning tree T with active node as root,

and each time a non-tree edge e is encountered, it is added to the (initially empty) list

of cycles.

With a complete list of cycles, the cost function g can be differentiated with respect to

the transformation parameters of edges in T , permitting iterative nonlinear optimisa-

tion. Setting the out-of-tree edge transformations to the composition of their in-tree

counterpart paths after the in-tree edges are modified guarantees that the cycle con-

straints are always satisfied.
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Using Levenberg-Marquardt or conjugate gradients, the computational expense of

each iteration of cost function optimisation grows super-linearly with the number of

graph edges, so preconditioned gradient descent (PCGD) is used instead. PGCD is

equivalent to Levenberg-Marquardt where the data matrix outer product is approxi-

mated by its block diagonal. This block diagonal matrix can be inverted in time linear

in the number of edges. The process is iterated, adjusting the diagonal regularising

term of Levenberg-Marquardt according to whether the cost function decreases after

each update. When the cost function stops decreasing and the regularising term is

large, the optimisation has converged.

This convergence might take hundreds or thousands of iterations with PGCD. How-

ever, each iteration has a low cost, and the optimisation can be easily amortised over

multiple time steps. A fixed number of iterations (default 30) is performed each frame

after all other updates, so convergence takes place over several video frames. When

there are no cycles in the graph, the optimisation process simply moves SG quadrati-

cally towards SL for every edge.

6.5.3 Caveats

While the local maps in the graph are statistically independent, the edge transforma-

tions are correlated. This is because the transformation estimates of distinct edges

depend on landmark estimates in common endpoint nodes. Thus, the cost function

above is not strictly probabilistically correct. However, as discussed in Bailey (2002)

(and Section 2.3.3), the correlations between edges may be of the sort such that ignor-

ing them gives conservative rather than overconfident estimates.

Nonetheless, the edge configuration that minimises the cost function g is not neces-

sarily the coherent configuration with maximum likelihood, due to these correlations.

In practice, though, the optimisation seems to yield good results, and considerably

improves the accuracy of the global map in the presence of cycles.
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6.6 Results

6.6.1 Consistency Evaluation

To evaluate the consistency of the proposed SLAM filter, the Monte-Carlo approach

of Bailey et al (2006a) is adopted. Given a known camera trajectory and known land-

mark positions, observations can be sampled for each time step of the trajectory. The

observations are sampled by projecting the true landmark positions through the ob-

servation model, and adding samples from the measurement noise distribution. Then

the SLAM system is run with these observations as input. At each time step k, the

mean and covariance (Ĉk,Σk) of the estimated pose are saved.

Each pose estimate (Ĉk,Σk) can then be compared to the true pose Ck, yielding the

normalised estimation error squared (NEES) for each time step k:

ǫk = ln(Ck ∗ Ĉ−1

k )TΣ−1

k ln(Ck ∗ Ĉ−1

k ) (6.28)

The NEES is related to the negative log-likelihood of the true pose given the estimated

pose. The filter consistency is measured by computing the average NEES over M

Monte-Carlo runs of the filter, each with a different set of samples from the observation

model. If the filter is consistent and linear-Gaussian, then ǫk is χ2 distributed with 6

degrees of freedom, and the average ǭk over the M runs tends to the dimension 6. This

hypothesis can be subjected to a χ2 acceptance test.

For M = 25 runs, if the filter is consistent and linear-Gaussian, Mǫ̂k has a χ2 den-

sity with 6M degrees of freedom. The 95% probability region for ǫ̂k is then given by

[4.719, 7.432]. If ǫ̂k rises much above the interval, the filter is optimistic – it overesti-

mates its information. If ǫ̂k sits below the interval, the filter is conservative.

The consistency of graph-based SLAM, FastSLAM, and EKF SLAM are compared us-

ing this approach. The FastSLAM implementation is the same as in Chapter 4, ex-

cept that landmarks are never converted to Euclidean parameterisation from inverse
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depth. The EKF SLAM implementation also stores all landmarks in the inverse depth

parameterisation, relative to the pose at their first observation. Using the Euclidean

parameterisation in the EKF was found empirically to give poor results. The same

constant velocity model is used in all three filters.

In order to stabilise the three filters, the measurement noise level reported to the fil-

ter is 2σ, while the noise with which observations are actually sampled is σ. Further,

the measurement noise is drawn from a uniform distribution on a disc of radius 2σ,

instead of from a Gaussian with standard deviation σ. The variance of both distribu-

tions is σ2. Using this noise distribution prevents the occasional addition of very large

measurement error to the observations, which is impossible in video-based runs due

to gated search. When the actual measurement error is too large, the map and pose es-

timates diverge. The inflated measurement noise implies that the NEES should reflect

somewhat conservative pose estimates if the filter is consistent.

In the first simulated sequence, the virtual camera views a fronto-parallel plane at dis-

tance 1 unit with evenly spaced landmarks. The camera strafes 0.2 units left and 0.4

units right, then returns to the origin, where it sits still for 240 time steps. Figure 6.5

shows the landmarks (yellow) and trajectory (blue). Figure 6.6 plots the average NEES

over 25 Monte-Carlo runs of the pose estimates given by the three filters. The 95%

bounds are drawn as horizontal lines. Note the scale of the FastSLAM results; the

filter is highly optimistic. The pose estimate EKF SLAM is conservative at first, but

then becomes inconsistent when the camera motion changes direction, and is opti-

mistic from then on. The estimate of Graph SLAM is temporarily inconsistent at the

acceleration point, but then returns to conservative behaviour.

The landmark configuration of the second simulated sequence is identical to the first,

but the camera motion is more complex. The camera strafes 3 units to the left and right,

while smoothly rotating about the horizontal and vertical axes, and moving along the

optical axis. Figure 6.7 shows the landmarks (yellow) and trajectory (blue). Figure 6.8

shows the results. EKF SLAM starts conservatively, but becomes optimistic when the

camera reaches the left end of the trajectory. It recovers consistency when passing
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Figure 6.5: Map and camera trajectory for a simulated planar scene with simple mo-
tion

through the origin, but then becomes even more optimistic as the camera moves to

the right. Graph SLAM is conservative for almost the entire run.

The final simulated scene is four vertical sides of a square box, with the camera per-

forming two outward-facing circuits inside the box. The camera starts at 12 o’clock,

and moves clockwise twice around the inside of the box, always facing away from the

centre. Figure 6.9 shows the landmarks (yellow) and trajectory (blue). The average

pose NEES plots are shown in Figure 6.10. The EKF SLAM pose estimate remains

conservative until halfway around the first loop, when it becomes highly optimistic.

Upon closing the loop, the estimate is again conservative. However, the second time

around the loop, the filter is even more optimistic than the first, showing that the

inconsistency is growing. FastSLAM remains conservative for a shorter time before

giving highly optimistic estimates, and never recovers consistency. Graph SLAM is

inconsistent only at the loop closing point, and the inconsistency is smaller the second

time around. This reflects the refinement of the graph, bringing the map (and thus the

pose) closer to the truth.
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6.6.2 Performance on Real Video

While the consistency evaluation confirms that the Graph SLAM filter is considerably

better at avoiding inconsistency than FastSLAM or EKF SLAM, it requires knowledge

of the true camera motion and landmark positions. These quantities are difficult to

know for real video sequences. However, following the approach of Chapter 4, the

pose estimates can be directly compared to those given by bundle adjustment over

the same observations. The globally optimised trajectory is the best the filter can hope

to achieve given the observations it acquires.

A desktop sequence of 920 frames is mapped with varying parameters, and the pose

estimate for each parameter set is compared to the output of bundle adjustment using

the same observations (which vary with the parameters). The total diameter of motion

of the camera is 2 units. Characteristic Graph SLAM visualisation output for the scene

is shown in Figure 6.11.

The error is quantified by the root-mean-square (RMS) camera position displacement,

relative to the bundle adjustment output, over all the frames in the sequence. Ta-

ble 6.1 shows the error over the same sequence with varying parameters. The maxi-

mum number of landmarks estimated in a node’s local map is NL. This bounds the

local computational cost of updates. When it gets very large, the filter approaches an

iterated EIF. The parameter mmin is the minimum number of observations required

each time step. If the number of observed landmarks drops below this, and there

isn’t enough room in the current node’s map to make up the deficit by acquiring new

landmarks, a new node is created (see Section 6.4.2). The target number of landmarks

observable each time step is given by mt. New landmarks are acquired, up to the limit

in the local map, to meet this quota. As mmin and mt increase, the number of nodes in

the graph (and thus total number of landmarks) also increases.

A few conclusions can be drawn from the results. Generally, the localisation accu-

racy is reasonable relative to the total scale of the trajectory (less than 1% error). The

localisation error generally decreases with more observations made each frame. How-
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NL mmin mt |V | RMS Err.

50

10

20 3 0.0451

30 3 0.0310

40 4 0.0270

50 3 0.0230

20

20 3 0.0541

30 7 0.0375

40 10 0.0181

50 6 0.0160

60

10

20 2 0.0297

30 2 0.0277

40 2 0.0187

50 2 0.0472

20

20 3 0.0255

30 6 0.0298

40 5 0.0159

50 5 0.0184

NL mmin mt |V | RMS Err.

70

10

20 3 0.0330

30 3 0.0235

40 4 0.0189

50 3 0.0181

20

20 3 0.0421

30 7 0.0403

40 10 0.0187

50 6 0.0196

80

10

20 2 0.0309

30 2 0.0296

40 2 0.0242

50 2 0.0295

20

20 3 0.0304

30 6 0.0286

40 5 0.0171

50 5 0.0187

Table 6.1: Localisation error relative to the output of global bundle adjustment for
a desktop sequence, as the parameters are varied. NL is the maximum number of
landmarks permitted in a node, mmin is the minimum number of observations to make
each frame, mt is the target number of observable landmarks each frame, and |V | is
the resulting number of nodes in the final graph. The last column is root-mean-square
position error over all time steps
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ever, the ratio of target to minimum number of observations is also important. This

is due to the crude heuristic for acquiring landmarks – when the landmark density

mt is high, but the minimum threshold mmin is low, the relatively few observations

made while exploring new territory with a full node are not well-distributed in the

view, so the localisation error is larger. This could be improved with a more sophis-

ticated incremental acquisition strategy. However, increasing mmin gives a noticeable

improvement, at the cost of a more complex graph. Values of NL = 60, mmin = 20,

and mt = 40 seen to give good results over a range of sequences, while limiting the

computational cost of local map updates (cubic in NL).

6.6.3 Loop Closing

To test loop closing ability in a repeatable way, the system is given as input the same

synthetically rendered planar loop sequences used in Section 4.6.5. In contrast to the

FastSLAM system, Graph SLAM successfully closes all of the loops. This reflects the

improved consistency of the filter, as the active search ellipses encompass the actual

landmark in the image. Figure 6.12 shows the large image search ellipses correspond-

ing to landmarks from the node furthest in the graph. The search regions are found

by transforming the landmark estimates through the graph into the current node, and

then into the image.

Figure 6.13 shows the graph being built during the course of a run on a rendered se-

quence of a loop with radius three, using default parameters (NL = 60, mmin = 20,

mt = 40). When the loop is almost complete, landmark estimates furthest away in the

graph have the largest uncertainty in the local coordinate frame (even though they are

geometrically nearby). When landmarks from the first node of the loop are success-

fully re-observed and added to the local map, an edge is created between the active

node and the first node, closing the loop. Immediately, the uncertainty of landmark

estimates decreases, as the path in the graph is now much shorter and better con-

strained. Figure 6.14 shows the rendered map just before adding the edge, and 20

frames later at the end of the sequence. There are 1369 unique landmarks in the final

map. The system processes every frame of the video in under 30ms.
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6.6.4 Limitations

Graph SLAM is considerably more consistent than EKF SLAM, but it also has its own

failure modes. When a new node is created, the estimation process is overly sensitive

to camera motion. Each node creation event is just like the system start; if the camera

sits still or undergoes pure rotation, the new local map will converge incorrectly. This

might be addressed by detecting a lack of camera motion and not updating the local

graph. Initial investigation shows that this helps in some, but not all scenarios.

When the graph becomes large, with many edges and cycles, the optimisation process

is computationally expensive. The cost might be mitigated by only optimising over a

fixed radius of the graph, but then long cycles would never be rectified. Further, the

edge optimisation assumes that each edge is statistically independent on all others,

when in fact they are all correlated through the local map estimates. This isn’t a prob-

lem on simple graphs, perhaps due to the reasons cited by Bailey (2002). However,

when there are many cycles, the graph does not always converge to the correct local

minimum.

Finally, the system does not by default produce a global map suitable for rendering.

This can be easily produced by mapping all landmarks through the graph into a com-

mon frame, but the cost of this operation increases with the complexity of the graph.

Of course,the rendering operation will always require linear time in the number of

landmarks, but the total cost might be reduced by an amortised rendering scheme.
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Figure 6.6: Average NEES of pose over 25 runs in a planar scene with simple motion
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Figure 6.7: Map and camera trajectory for a simulated planar scene with complex
motion
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Figure 6.8: Average NEES of pose over 25 runs in a planar scene with complex motion
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Figure 6.9: Map and camera trajectory for a simulated box scene with twice-looping
motion
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Figure 6.10: Average NEES of pose over 25 runs in a piecewise-planar scene with
complex motion
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Figure 6.11: Graph and map at two points during a desktop sequence. The active node
is blue; other nodes are red. Graph edges are green. The landmark 3σ ellipsoids are
yellow. The camera trajectory is orange.

Figure 6.12: When nearing the starting point of the loop, the large search ellipses reflect
the uncertainty in the location of the landmarks in the image. Once the landmarks are
added to the current node, the uncertainty collapses
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Figure 6.13: The map and graph during a synthetic planar sequence, rendering using
only landmark estimates in nearby nodes (left) and using all estimates (right). The
current active node (blue) is at the origin of the rendering

Figure 6.14: The map before (left) and after (right) closing the large circular loop in a
synthetically rendered planar sequence. There are 1369 landmarks in total in the final
map. The reduced uncertainty of landmarks in other nodes, mapped into the current
coordinate frame, is reflected on the right



7
Unified Loop Closing and Recovery

7.1 Introduction

Most existing real time monocular SLAM systems rely primarily on tracking to per-

form localisation at each time step, using a motion model and active search to con-

strain the camera trajectory and update the map. Certainly, the EKF SLAM system of

Davison (2003) and the approaches described in chapters 4 and 6 fall into this cate-

gory. The efficient use of sensor data in these systems, formulated as active search,

relies on the tracking assumption: The camera motion is assumed to be decently ap-

proximated by the dynamic model, and sufficient observations can be made at each

time step to maintain steady tracking.

However, the tracking assumptions are easily violated by unmodeled motion or fail-

ure to find landmarks in the video due to blur, occlusion, or an insufficient appearance
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model. Tracking failure causes incorrect data association and motion estimation, lead-

ing to catastrophic corruption of the structure estimate.

Even when the camera motion and environment are favourable, the statistical filtering

often delivers inconsistent results on a large scale. This problem is not confined to

monocular SLAM, but plagues metric SLAM in general. Resulting maps are locally

correct, but globally incoherent, and nontrivial loops are difficult to close using the

standard active search techniques.

Such fragility and inaccuracy make real-time monocular SLAM unusable for all but

the most carefully constructed sequences, and motivate the development of out-of-

band recovery and loop closing algorithms. Recovery refers to relocalisation of the cam-

era pose following a tracking failure. Loop closing refers to data association between

two logically distinct parts of the map that correspond to the same part of the envi-

ronment, even when tracking is proceeding smoothly.

7.1.1 Contributions

This chapter proposes a unified framework for loop closing and recovery in monoc-

ular SLAM, and presents an instantiation of this framework building on the SLAM

system of Chapter 6. The contributions are thus both general and particular:

• Formulation of recovery and loop closing as instances of the same association

process in graph-based or submap SLAM

• General hierarchical method for performing this association in visual SLAM

based on global and local appearance models and structure matching

• Implementation consisting of:

– Visual bag-of-words model constructed online

– Local appearance dictionaries built from active search

– Structure matching using MLESAC and the three-point-pose algorithm
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First, related work is reviewed in Section 7.2. The proposed framework and general

hierarchical approach is described in Section 7.3. Section 7.4 discusses the image fea-

tures used for the appearance models. Section 7.5 describes the global appearance

model, while Section 7.6 describes the local appearance model. Then Section 7.7 ex-

plains the operation of the unified loop closing and recovery algorithm. Section 7.8

presents performance results and suggests further avenues of investigation.

7.2 Related Work

7.2.1 Recovery

The SLAM algorithm of Pupilli & Calway (2005) (see also Section 4.1.2) uses a par-

ticle filter to model camera pose, which makes the tracking robust to erratic motion,

but fails to account for dependence between the camera and landmark estimates, and

cannot make coherent maps for many landmarks. The tracking recovery mechanism

relies on the camera continuing to observe existing structure immediately after failure.

Williams et al (2007) present a robust relocalisation method built into the EKF SLAM

system of Davison (2003). Classification with randomised treesLepetit et al (2005)

yields image-to-landmark matches, from which pose is recovered when tracking has

failed. However, classification using randomised trees breaks down in the domain of

thousands of classes, and the online class training and storage costs (30ms and 1.25MB

per landmark) are prohibitive when dealing with many landmarks each time step.

Chekhlov et al (2007) employ invariant descriptors based on SIFT (Lowe (2004)) to

increase the robustness of SLAM tracking. Active search by correlation of patches

is replaced with matching of these descriptors in gated regions. Multiple exemplar

descriptors are used to identify landmarks under significant viewpoint changes. This

technique allows robust tracking under camera shake, and limited relocalisation when

tracking fails. However, if the camera suddenly leaves the region, then the constrained
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matching procedure cannot accommodate the complete pose uncertainty when the

camera returns at a later time.

7.2.2 Loop Closing

Clemente et al (2007) have extended Davison’s system to allow loop closing when two

sub-maps have independently chosen the same landmarks from similar viewpoints.

However, the loop closing is not efficient (taking more than 1 minute), and the loop

detection conditions are rarely satisfied in practice (Williams et al (2008)).

Loop closing using visual appearance is not a novel idea; the richness of camera data

makes it particularly suited to the task of recognising similarity. Dudek & Jegessur

(2002) use descriptors derived from principal component analysis over Fourier trans-

formed image patches to describe and match frames, and then use a vote over de-

scriptors to choose a database image. Newman et al (2006) build a similarity matrix

to evaluate the statistical significance of matching images when laser range data also

matches.

Sivic & Zisserman (2003) apply the bag-of-words model, previously used in text re-

trieval, to perform content-based retrieval in video sequences. Affine-invariant de-

scriptors extracted from the videos are clustered at training time, and then quantised

to the cluster centres at run time to yield visual word histograms in the images. Poten-

tial matches are ranked using the term-frequency inverse-document-frequency metric.

Nistér & Stewénius (2006) extend the framework of Sivic & Zisserman (2003) to very

large vocabularies (in the millions) by using a hierarchical clustering scheme. Each

level of the hierarchy splits the word set into ∼10 clusters, which are then recursively

split in the branches. A query image is matched to the database by propagating its

words through the tree toward the leaves, computing a query vector according to

the weights assigned to nodes. The query vector is then a descriptor for the image,

matched against the database images using an inverted index. While this method
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yields excellent matching results into large databases of words and images, the train-

ing and storage costs for such large vocabularies is very high (not only with this clus-

tering method).

The appearance-based SLAM work of Cummins & Newman (2007) applies the bag-

of-words method within a probabilistic framework to detect loop closures. A gen-

erative model of word expression yields a likelihood of observed words over stored

places, permitting maximum-likelihood data association and update of the place’s ap-

pearance model parameters. The generative model establishes conditional dependen-

cies in word expression by computing a Chow-Liu tree in training. While the system

delivers high accuracy visual matching, the generative model must be computed of-

fline and the model update cost at each time step is high.

Very recent work by Williams et al (2008) uses the randomised-trees relocalisation

method described above to close loops in submap-based SLAM. This loop-closing ap-

proach is very similar to the one presented here. However, it shares the drawbacks

listed above for randomised-trees classification. Further, relocalisation is tried against

each submap in turn, in a brute-force manner. The hierarchical visual appearance

model described by this chapter focuses the search for correspondences.

7.3 Method Overview

7.3.1 Motivation

In a SLAM algorithm operating on a set local maps, such as the one described in

Chapter 6, the maps encode local structure estimates, and the connections between

the maps (e.g. edges) describe the transformations between local coordinate frames.

When camera motion is smooth and tracking is successful, the local maps are updated

as the pose estimate moves through the set via the connections.
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When something goes wrong, such as unmodeled camera motion or dynamic occlu-

sion from moving objects, not enough is known about the motion of the camera to

localise it within the set of existing maps. The system can detect this failure and avoid

corrupting the map by ceasing filter updates. Then it can continue to look for known

scenes and try to relocalise when they are detected, recovering tracking. This is the

approach of Williams et al (2007).

However, this policy is satisfactory only when known structure is likely to be encoun-

tered again soon after tracking failure. Consider a trajectory in a large loop, with a

tracking failure near the beginning of the loop. If mapping stops at the failure, and

the relocalisation algorithm doesn’t find the known structure until the camera returns

to the beginning of the loop, all of the potential information from the middle of the

sequence is lost. Instead, mapping should continue in the middle of the sequence, and

the new map should be connected to the old one upon recognition of the beginning of

the loop.

Further, the recognition of known scenes and structure yields data association in gen-

eral, not only when tracking has failed. An algorithm that solves the relocalisation

problem should also be able to aid the closing of loops among a set of local maps.

7.3.2 Unified Method

Given a graph of local maps connected by coordinate transformation estimates, recov-

ery and loop closing both reduce to the task of recognising already-mapped structure

in the environment, thereby creating new connections in the graph. This can be accom-

plished robustly and efficiently by using a hierarchical appearance model and taking

advantage of existing structure estimates.

At the coarse level, a global appearance model encodes the rough appearance char-

acteristics of different local maps. Then every image captured by the camera can be

represented in a similar fashion and compared to these appearance signatures, in or-

der to identify local maps that include scenes visually similar to the query image.
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The appearance of landmarks within each map is better modeled at the finer, local

level. Associated with each local map is a local appearance model, which matches

interest points of a query image with landmarks in the map. The model for each

landmark is rich enough to represent the landmark’s varying appearance within the

local map.

Loop closing or recovery proceeds as follows.

1. The global appearance database is queried to find candidate local maps that in-

clude scenes visually similar to the current video image.

2. Interest points in the image are matched against the local appearance models of

the resulting maps, yielding hypothetical correspondences between locations in

the image and landmarks in the map.

3. These correspondences are checked for coherent structure using the candidate

map’s estimate, possibly giving as output a pose estimate relative to the map.

4. The relative pose estimate is treated as a candidate edge over multiple time steps,

during which landmarks from the candidate map are observed by transforming

their estimates through the candidate edge.

5. Once the candidate edge is confirmed by sufficiently many observations, it as

promoted to a graph edge.

When tracking fails, a new graph component is created and mapping continues. If

the procedure above succeeds and creates an edge between nodes in two different

connected graph components, a recovery or reconnection has occurred. If the two

nodes connected by the new edge are in the same component, a loop has been closed,

and a cycle has been added to the graph.
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7.4 Invariant Features

The appearance models used in loop closing and recovery should be robust to moder-

ate viewpoint changes, so that loops can be closed or recovery performed without re-

quiring the camera to exactly revisit a previous pose. To this end, the models are built

from distinctive feature descriptors of interest points robust to viewpoint changes. De-

tectors and descriptors for these sorts of features abound, and have been the subject

of much research.

Examples of detectors that have some degree of reliability over scale and affine im-

age deformation include FAST (Rosten & Drummond (2005)), difference-of-Gaussians

(Lowe (2004)), Harris-affine and Hessian-affine (Mikolajczyk & Schmid (2004)), Fast-

Hessian (Bay et al (2008)), and MSER (Matas et al (2002)). Descriptors computed

around detected interest points include SIFT (Lowe (2004)), PCA-SIFT (Ke & Suk-

thankar (2004)), MOPS (Brown et al (2005)), GLOH (Mikolajczyk & Schmid (2005)),

and SURF (Bay et al (2008)).

In combination with the difference-of-Gaussians (DoG) scale space detector, the SIFT

descriptor has been widely tested in the literature, and fares well in a performance

evaluation comparison with other descriptors (Mikolajczyk & Schmid (2005)). The

SURF descriptor is similar, but sacrifices the isotropic detection and description of

SIFT. PCA-SIFT and GLOH are also inspired by SIFT, but both require offline PCA

from large datasets. Most importantly, Sivic & Zisserman (2003) report that the SIFT

descriptor gives good performance in their bag-of-words image retrieval application.

The DoG detector and the SIFT descriptor are attractive options for constructing the

global and local appearance models. The problem with using DoG+SIFT in this setting

is the cost of computation. In order to achieve reasonably efficient online operation,

the detector is highly optimised and the descriptor computation is reduced.

The DoG detector, as described by Lowe (2004), approximates scale-space with a dis-

crete pyramid of Gaussian-blurred images. The Gaussian convolution can be very
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expensive if implemented naively. However, downsampling the image (to 320 × 240)

and omitting the recommended initial upsampling removes two levels of the pyra-

mid, while eliminating only the smallest image features, which are most sensitive to

noise. Further, using the recursive Gaussian filter of Young & van Vliet (1995), with

the improvements suggested by Triggs & Sdika (2006), the pyramid construction time

is significantly reduced.

The descriptor computation proceeds similarly to the standard routine of Lowe (2004).

The orientation of the patch around a detected corner, at the scale of detection, is es-

timated, and the patch is mapped into a canonical 13 × 13 representation using bilin-

ear interpolation. If multiple orientations are detected, then multiple corresponding

patches are generated.

For each such canonical patch, the polar gradient is computed and multiplied by a

2D Gaussian envelope, decreasing the influence of values on the edges. Separate his-

tograms of gradient angle, weighted by gradient magnitude, are computed over a grid

on the patch, with trilinear interpolation in the grid and angle bins. In the original for-

mulation, there are 4 × 4 grid elements, each with 8 angle bins, resulting in a 128D

vector. To reduce the description, storage and lookup cost, this is reduced to a 2 × 2

grid with 4 angle bins in each element, giving a 16D vector. As in Lowe (2004), the

vector is normalised to unit magnitude, clamped so that no value exceeds 0.2, and

then renormalised.

These modifications allow efficient detection and description of interest points. On

a 3 GHZ Intel Core 2 Duo, the detection algorithm takes approximately 6 ms, and

the descriptor computation takes 7 ms for the 250 strongest interest points. Detection

and description for each video image are performed on the second processing core, in

parallel to the SLAM algorithm, so their output is ready for use at 6 ms and 13 ms into

the time step, respectively. The resulting 16D descriptors, while likely sub-optimal,

perform more than well enough to show that the system works.
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7.5 Global Appearance Model

The global appearance model is used to select nodes visually similar to the current

video image, based on a visual bag-of-words. The visual words are created and clus-

tered online. Each node builds a word expression signature to describe its appearance,

against which video images are compared.

7.5.1 Bag-of-Words

The bag-of-words model, originally used for text processing, treats a document as an

unordered collection (‘bag’) of words, each of which is listed in a central dictionary.

The document can then be described by a histogram over word expression, counting

how many times each word appears. This description allows similar documents to be

retrieved from a database, using any of a variety of similarity scores.

Sivic & Zisserman (2003) extend this model to image description by treating each

image as a document, and quantising feature descriptors in the image to visual words

in a fixed vocabulary. SIFT descriptors of interest point tracks are harvested from

a subset of the frames in a video, and the resulting 200,000 descriptors are clustered

using k-means into 10,000 cluster centres. The cluster centres are the visual words. The

descriptors for interest points in a query image are quantised to these words, giving a

histogram over word expression. Then frames from the database are ranked using the

term-frequency inverse- document-frequency (TF-IDF) metric.

TF-IDF weights words proportionally to their expression in the query image and in-

versely to their expression in the database. Let the set of all visual words be V , and

let ei(q) be the expression count of word vi ∈ V in the image q. Then the term fre-

quency tfi(q) of word vi is given as the fraction of total word expression for which vi

is responsible in the image:

tfi(q) =
ei(q)
∑

vj∈V

qj

(7.1)
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The inverse document frequency idfi for word vi increases with the rarity of the word

in the database. Let F represent all frames in the database. Then

idfi = log
|F |

∑

f∈F

ei(f)
(7.2)

The TF-IDF vector tfidf(q) for an image q is then specified component-wise for each

word:

tfidf(q)i = tfi(q) · idfi(q) (7.3)

Given a query image q, images f ∈ F are ranked according to the cosine of the angle

between the query and database TF-IDF vectors:

score(q, f) =
tfidf(q)T tfidf(f)

‖tfidf(q)‖‖tfidf(f)‖ (7.4)

An equivalent ranking results from taking the Euclidean distance between normalised

vectors as the difference metric. Note that the inner product need only be computed

on words existing in both q and f . If no words expressed in q are expressed in f , it

need not be considered at all.

7.5.2 Online Clustering

Sivic & Zisserman (2003) compute the vocabulary offline by extracting descriptors

from a similar set of images that will be used as queries, clustering with k-means.

This offline training can be expensive, as the clustering requires many iterations for

convergence given thousands of clusters and descriptors.

In the interest of avoiding any offline training requirements, and in order to tailor the

vocabulary to the run-time environment, online vocabulary construction is used for

the global appearance model. The clustering method employed is crude but effective.

It relies on a fixed cluster radius, rg, which is chosen by analysing the relation be-

tween cluster radius and vocabulary size in offline clustering. For this work, rg = 0.3.

Since the descriptors are of unit length, the largest possible distance between any two
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Figure 7.1: Example image patches that quantise to each of four visual words

descriptors is 2, if they are antipodes on S15. Example word clusters are shown in

Figure 7.1.

Spill trees are used to perform descriptor quantisation and online clustering. The spill

tree data structure is presented by Liu et al (2004) as an extension of metric trees. In

metric trees, a set of points is recursively partitioned by choosing directions of high

variance, projecting the points on to the 1D subspace, and partitioning around the

mean or median in that subspace. The nearest neighbour of a query point x is found

in a metric tree using depth first search. At each node in the tree, the branch corre-
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sponding to the side of the splitting hyperplane in which x lies is followed first, and

the current nearest neighbour hypothesis h is maintained. The other branch is taken

(recursively) only if the lower bound on distance to points in that branch (imposed by

the splitting plane) is smaller than the distance to h. Most of the cost of queries comes

in this backtracking phase. A spill tree allows overlap in the splitting, so that the need

to backtrack is reduced. Using a greedy algorithm, only the favourable branch is taken

all the way to a leaf, yielding an approximate nearest neighbour. This defeatist search

in a spill tree is much faster than the exact search in a metric tree, and usually returns

the correct result.

The vocabulary, V , is empty when the system starts. In order to avoid adding spurious

or ephemeral words to V during online clustering, a second vocabulary, Y , the young

word database is also maintained, and also is empty to start. The SIFT-like descriptors

of Section 7.4 D are computed for all DoG interest points detected in the video image.

A spill tree on V is maintained, and the nearest neighbour w of each descriptor d ∈ D

is queried in the tree using defeatist search. In the simple case, ‖w − d‖ ≤ rg, so the

descriptor is quantised to w, and the expression count of w for the video image is

incremented.

If no existing word is found within distance r of d, the tree is queried again using exact

(metric tree) search. If the exact nearest neighbour in V is still farther than rg from d,

then d could be an as-yet unseen word.

Then the nearest neighbour y ∈ Y to d is found. If ‖y − d‖ > rg, then di is added to

Y as a new young word. Additionally, two counters are associated with d: ttl(d) and

occur(d), corresponding to time-to-live and occurrence count respectively. The time-

to-live is initialised to the constant ttl0, and the occurrence count is initialised to 0, as

the word has not been reobserved yet.

If instead ‖y− d‖ ≤ rg , then d quantises to y in the young word database. The time-to-

live ttl(y) is reset to ttl0, and the value of occur(y) is incremented. If occur(y) reaches
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a threshold min occur, y is removed from Y and added to the main vocabulary V as a

word. By default, min occur = 3.

At each time step, the value of ttl(y) is decremented for each y ∈ Y . If ttl(y) reaches

0 before y is promoted to V , y is removed from Y and discarded. Thus words are

discarded that are not seen at least once every ttl0 time steps, for min occur times in a

row.

7.5.3 Per-Node Expression Histogram

A word expression histogram is associated with each node in the graph. Thus, the

database of images used by Sivic & Zisserman (2003) is replaced by a database of local

maps. Instead of a database histogram describing what visual words are expressed in

one image, it describes what words are expressed in all the video images associated

with a node.

At the end of each time step, the word expression signature of the current active node

is updated using all of the words expressed by the current video image. The expres-

sion histogram for the current image has already been computed and used to update

the global vocabulary. It is added to the expression histogram for the active node.

This cumulative per-node histogram constitutes the nodes’ general appearance model

in terms of the global vocabulary.

Whenever a word w is expressed at least min expr times in a node, the node is added

to a global inverted index mapping words to those nodes that express them. So until

w has been expressed at least min expr times in a node, that node is ignored in the

ranking process with respect to w. By default, min expr = 3.
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7.5.4 Visual Similarity Ranking

Given the word expression histogram for the current video image, visually similar

nodes in the graph are identified using the TF-IDF ranking. Because the similarity

search is used for loop closing and recovery, the current active node and any nodes

connected to it are omitted from the ranking.

The ranking is efficiently computed by iterating through each word w expressed by

the image, and computing TF-IDF components for the nodes listed in the global index

as having expressed w. The scores for nodes expressing words expressed by the image

are thus incrementally computed, and the best k are returned as the candidate nodes

most likely to be visually similar to the current image. By default, k = 2.

7.6 Local Appearance Model

7.6.1 Local Landmark Descriptor Dictionary

Once a candidate node α is selected using the global appearance model, points in the

current image must be associated with landmarks in α. These correspondences are

established using the local appearance model Lα associated with α, which encodes

the varied appearances of the landmarks observed in α. Lα is constructed similarly

to the global appearance model V , except that only observations of landmarks made

while α is active are used as input. Each entry in Lα is a pair (w, lw), where w is a

descriptor vector and lw is the landmark associated with the descriptor.

Assume node α is active. Every time an image search for landmark li is successful,

a descriptor di is computed at the position and scale of the observation mean in the

image. The nearest neighbour (w, lw) ∈ L to di is found (using a metric tree on L). This

local nearest neighbour search is bounded by the local cluster radius rl. If ‖w−di‖ ≤ rl,

and lw = li, then the appearance of li is already represented (to within rl in descriptor

space) by L.
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If ‖w−di‖ > rl or lw 6= li, then this appearance of the landmark is not well-represented

by the local appearance model. The pair (di, li) is inserted into L. The local clus-

ter radius rl is motivated by the observed distance between descriptor values for ob-

servations of the same landmark relative to those of distinct landmarks. By default,

r = 0.15. Usually, the number of entries in L for any one landmark is between one

and ten. Often, the entries correspond to the three or four descriptors of right-angle

rotations of the landmark patch, which are the possible local minima of the orientation

detection stage of the descriptor computation.

7.6.2 Modified Landmark Acquisition and Search

In order to increase the reliability of matches between interest points in a video im-

age and the appropriate local appearance model, new landmarks are acquired from

the same DoG interest points used for the appearance models, instead of from FAST

corner locations as described in Chapter 6.

Because each DoG point has an associated scale, a patch for the landmark is acquired

at that scale from the image of first observation. The scale can vary over several oc-

taves (in powers of two) of the image, so patches are grabbed from the image of appro-

priate resolution. These scaled images are available from the scale pyramid already

computed for DoG detection.

When observing landmarks using active search and ZNCC, the predictively-warped

patches have a similarly wide range of scales. Again, the appropriate level of the scale

pyramid is chosen, wherein the patch has a reasonable size (neither too big nor too

small). The varied resolution of such searches is accounted for by multiplying the

measurement noise by the appropriate scaling factor.
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Figure 7.2: Loop closing and recovery: Candidate matching nodes are chosen by visual
appearance similarity. Then structure is matched using landmark appearance models,
and a candidate edge is created. Observations are made via the candidate edge until it
is promoted, at which point a cycle is created (top) or two components are connected
(bottom). The active node is shaded

7.7 Loop Closing and Recovery

Given the appearance models established by Section 7.5 and Section 7.6, the machinery

for the loop closing and recovery method is prepared, and the procedure is described

here. Both the loop closing and recovery circumstances are depicted in Figure 7.2.

7.7.1 Successful and Failed Tracking

When motion is smooth and fits the dynamic model, and active search is working as

designed, tracking is successful. Mapping then proceeds according to the algorithm

described by Chapter 6. However, when very few observations are made, tracking

is considered failed. Instead of corrupting the maps in the current graph, or waiting

until recovery is detected, a new graph component is created.

A global list of disjoint graph components is maintained by the system. Upon the

creation of a new graph component, mapping begins afresh just as when the system

started. In the absence of recovery, these components remain disconnected. The pose
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estimate is always given relative to the active node in the current connected compo-

nent.

7.7.2 Global and Local Appearance Matching

The first step in loop closing or recovery is identifying those nodes which are visually

similar to the current video image. Section 7.5 explains the appearance model used

for this step, and in particular, Section 7.5.4 describes how the nodes are ranked by

visual similarity. Each of the top k ranked nodes is a candidate node for matching. Each

candidate node is considered in turn.

The descriptors of the current image are matched against the local appearance model

Lα of candidate node α to get correspondences between interest points in the image

and landmarks in the local map of α. This descriptor matching in Lα is made more

robust by finding the two nearest neighbours (n1, l1) and (n2, l2) to each descriptor d

from the image. If ‖n1 − d‖ > rl, the match is rejected outright. Otherwise, if l1 6= l2,

the distance ratio test of Lowe (2004) is applied: If ‖n2 − d‖ < 1.2‖n1 − d‖ the match is

rejected.

The result is a set of hypothetical correspondences {(pi, li)} between interest points

in the image and landmarks in the local map of α. Some or all of these correspon-

dences may be spurious, due to repeated texture and noise in the interest points and

descriptors. Additionally, no uniqueness constraint is applied to the landmark corre-

spondences; multiple interest points might match to the same landmark in the local

map. Outliers and incorrect hypotheses are eliminated by structure matching.

7.7.3 Structure Matching

The structure matching algorithm is similar to the one used by Williams et al (2007) for

relocalisation, though the input correspondences are produced by a different process.
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MLESAC (Torr & Zisserman (2000)) and the three-point-pose algorithm are used (Fis-

chler & Bolles (1981)) to identify the inliers in the set of hypothetical correspondences.

Any three matches from descriptors to distinct landmarks in the candidate node de-

termine a camera pose relative to the local map of candidate node α. For many such

poses, the maximum-likelihood set of inlier correspondences are computed, with a

fixed log-likelihood threshold of −5.0. Thus, under a pose hypothesis, if the log-

likelihood of a correspondence, taking account measurement noise, is less than −5.0,

the correspondence is considered an outlier for that pose. For each pose, the corre-

spondence per landmark of highest likelihood is chosen if multiple correspondences

with the same landmark exist.

Up to 200 random three-point-pose hypotheses are tested in this manner. If the highest-

likelihood pose M has at least 7 inliers, the structure matching is considered suc-

cessful. The estimate of M is refined using all of the inliers, and a directed candi-

date edge is created, pointing from α to the current active node. The transformation

estimate S ∼ N (Ŝ,ΣS) associated with the candidate edge is initialised using both

M ∼ (M̂ ,ΣM ) and the current pose estimate C ∼ N (Ĉ) relative to the active node. In

particular, the mean of the transformation is given by

Ŝ = Ĉ−1M̂ (7.5)

The covariance ΣS is computed analogously. Note that the scale of this transformation

is unknown, but is not required for the confirmation stage.

7.7.4 Confirmation

A candidate edge e created from structure matching is not necessarily a valid corre-

spondence between the current scene and the local map of the candidate node α. It

must be vetted over multiple time steps and motion of the camera, to ensure that the

match was not a fluke. This confirmation is achieved by checking that the estimates

of landmarks in α, transformed through e, are observable in the video over multiple

frames.
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A list of candidate edges pointing into the current active node is maintained. At each

time step, after the pose estimate has been updated with the latest observations, land-

mark estimates from the source nodes of these candidate edges are projected into the

image, according to the candidate edge transformation and the current pose estimate.

Observations of these landmarks are attempted using the standard active search pro-

cedure. Because the pose has been well-constrained by local observations, the search

ellipses reflect mostly the uncertainty in the candidate edge transformation, which is

usually small. Thus the search ellipses are small, and the active search is very efficient.

Any observations made of such landmarks are used only to update the confidence

measure of the candidate edge. A counter keeps track of the number of successful and

failed observations. When both the number of successes and the ratio of successes to

failures are sufficiently high, the edge is confirmed. If either the number of failures

is too high or the success rate is too low, or if the candidate edge has been in the

confirmation stage for many time steps, it is discarded.

7.7.5 Edge Creation

A confirmed candidate edge is promoted to a normal graph edge, with its rigid trans-

formation unchanged, its scale set to unity, and its uncertainty in scale effectively in-

finite. The latest observations used to confirm the edge are also promoted to normal

observations, so that landmarks from the now-connected node can be added to the

local map of the active node. Recall that the new edge’s transformation will be con-

strained only by estimates of such shared landmarks.

If the candidate node is in a different graph component than the active node, then the

components are merged in a reconnection event. However, if the younger of the two

components is very young (less than 2 seconds old by default), then it can be consid-

ered to contain little useful mapping information, and it is discarded. In this case, the

pose estimate is transformed into the candidate node by the edge transformation, and

the candidate node becomes the active node. This is a recovery event.
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Otherwise, the new edge is directly connecting two nodes in the same graph compo-

nent, in a loop closing event. This introduces a new cycle in the component. Recall

that cycles induce constraints on the graph, which are satisfied and optimised itera-

tively (see Section 6.5). A loop closing event often causes rapid modification of the

graph edges in the optimisation, as the residual is re-minimised under the additional

constraints.

7.8 Results

The described method is implemented on top of the system of Chapter 6 to run in real

time on a dual-core computer. Image searches and filter updates proceed in parallel

with interest point detection, descriptor computation, and global appearance main-

tenance. On a 2.2 GHz Pentium Core 2 Duo, per-frame processing never exceeds 33

ms. The system successfully closes loops and recovers from tracking failure in both

indoor and outdoor sequences, while operating in real time and mapping thousands

of landmarks.

A completely planar real scene is used as a basic test of reconstruction accuracy. The

camera hovers at typical viewing distance h above one part of the scene, before be-

ing kidnapped to the other half (the lens is covered during the motion). The system

continues mapping by creating a new component. When the camera again views the

original portion of the scene, the two components are matched and reconnected. The

final map contains 251 landmarks. All 226 landmarks with depth uncertainty σ < h/50

are no farther than h/100 from the maximum likelihood plane.

In an outdoor sequence, the camera moves in an elliptical loop, with the camera fac-

ing outwards. Rough camera motion causes tracking failure, but the system immedi-

ately recovers. Extended failure occurs when the camera is suddenly rotated toward

the ground. Mapping of novel views then continues in a new component. As the

camera returns to near the starting point, a node in the first connected component is

recognised and matched, and the components are merged. As the trajectory continues



7.8 Results 174

around the loop a second time, the loop itself is closed. The resulting map contains

1043 landmarks.

In an indoor scene, a complex external loop is traversed and closed. Then the camera

is repeatedly kidnapped from one part of the environment to another, with new view-

points significantly different from the originals. In all cases, recovery occurs within 15

frames. The final map contains 1402 landmarks.

7.8.1 Future Work

The method presented in this chapter greatly improves the robustness of real time

monocular SLAM, but is not flawless. The worst failure mode of the system is spurious

loop closure given extensive repeated structure, causing massively incorrect graphs.

In testing, this occurs only in synthetic sequences with large, exactly repeating tex-

tures. The problem is particularly difficult to solve in general, as repeated structure at

arbitrary scales could always be encountered, theoretically. A probabilistic model for

appearance-based loop closure, such as the method of Cummins & Newman (2007,

2008), could mitigate the issue.

Another problem is that the cycle optimisation treats the edge transformation esti-

mates as independent, though they are in fact correlated through the node estimates.

The assumption is not harmful when the graph contains few cycles, or mostly short

cycles, but results in over-confident (and thus inconsistent) global maps when many

loops are optimised. The optimisation strategy could be replaced by conservative local

graph adjustments, or by global bundle adjustment over all edge transformations.

While the bag-of-words global appearance model with TF-IDF ranking is sufficiently

distinctive for the test environments, its performance and discrimination needs to be

evaluated in much larger environments, with larger node sets. In particular, the rela-

tion between vocabulary size and discrimination should be established. This chapter

has merely proposed a unified framework and a proof-of-concept implementation; in
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Figure 7.3: Left: video frames of loop closure or recovery events. Right: the most
similar previous view of the scene. Normal observations are green, while observations
via candidate edges are magenta
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Figure 7.4: Before and after loop closure in two sequences: Landmarks are yellow,
graph edges are green, nodes are red, and the camera is a small frustum. Each pair is
from consecutive time steps (33 ms apart), before further incremental refinement by
the graph optimiser
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the larger scale, a more hierarchical or altogether different appearance model might

be necessary.



8
Conclusion

8.1 Summary

This thesis has explored the manifold of frame-rate SLAM with a single camera, con-

sidering scaling efficiency, landmark types and representations, consistency, robust-

ness, and loop closing. Two monocular SLAM systems have provided the context for

these investigations, with one focusing on efficiency and the other on consistency.

The first system adapts the Rao-Blackwellised particle filtering framework of Fast-

SLAM to a monocular SLAM setting, allowing the efficient mapping of hundreds to

thousands of landmarks. The top-down search method that makes data association

and image processing efficient is adapted to the particle filter framework. An inverse

depth parameterisation is employed for the partial initialisation problem. The system

delivers accurate localisation over small areas.
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This system is extended to include edge landmarks, permitting a different geometric

representation of the environment. The definition and representation of the new land-

marks, called edgelets, are motivated by the locality properties of point landmarks.

The edge appearance model makes image operations efficient, but data association

becomes ambiguous. A random sampling method is used for robust data association

in the presence of multiple hypotheses.

The second system, called Graph SLAM, is motivated by the consistency problem in

SLAM. The graph formulation is designed to split the estimation problem into local

and global components, so that local maps are consistently estimated and the nonlin-

ear relations between them are globally optimised. Pose is estimated outside of the

local map state, and the motion model is not used to update the local maps. Pose

and landmark estimates are propagated through the graph from one coordinate frame

to another. The estimation is qualitatively more consistent than FastSLAM or EKF

SLAM, and efficiently maps more than a thousand landmarks.

Graph SLAM is then extended with a unified framework for loop closing and recov-

ery. The framework comprises a hierarchical appearance model, using a bag-of-words

representation on the global scale and a dictionary of landmark exemplars on the per-

node scale. Both models are built on invariant descriptors similar to SIFT. Appearance

and structure are matched between video images and local maps, and confirmed over

multiple time steps. Creation of new graph edges by this method addresses both loop

closing and recovery. The resulting extended system successfully recovers from mul-

tiple tracking failures, stitching together graphs created at different times, and closing

loops when active search is insufficient. Though presented within the Graph SLAM

system, the framework can be applied in any submapping SLAM scenario.

8.2 Contributions

The body of this thesis makes the following contributions:



8.2 Contributions 180

• Real time monocular SLAM with thousands of landmarks using FastSLAM. The

application and adaptation of the FastSLAM filter increases by an order of mag-

nitude the number of landmarks feasibly mapped at frame-rate.

• An inverse depth parameterisation for landmarks. The parameterisation makes

the observation model nearly linear under small camera displacements, allow-

ing standard linear-Gaussian filters to be used for landmark initialisation.

• Edge landmarks suitable for monocular SLAM. The landmarks have the con-

venient locality properties of point landmarks, while modelling different image

and world features. The resulting maps give a pleasing wireframe representa-

tion of edges in the environment, including slowly curving edges.

• An efficient selection method for edgelet landmarks. The method requires min-

imal computation and finds short edge segments unlikely to be confused with

others during tracking.

• The Graph SLAM system for consistent SLAM. By partitioning observations be-

tween local maps and estimating coordinate transformations using shared land-

marks, consistent estimation is maintained where EKF SLAM and FastSLAM

become inconsistent. A global optimisation over graph edges aids map conver-

gence.

• A unified framework for loop closing and recovery. The framework uses global

and local appearance models and structure matching to find correspondences

between the video and parts of the map. Mapping continues after failure and

the map is reconnected upon recovery. Loop closing succeeds even when the

filter’s localisation estimate is inaccurate.

• An instance of the loop closing and recovery framework in the context of Graph

SLAM. Invariant feature descriptors and bag-of-words provide the appearance

models, and structure matching proceeds by the three-point-pose algorithm and

MLESAC. The system successfully maps difficult sequences with several track-

ing failures and loop closures.
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8.3 Future Work

The investigation of monocular SLAM in this thesis highlights a number of avenues

for further research:

• Particle filtering methods such as FastSLAM rapidly become inconsistent. Meth-

ods for maintaining or recreating particle diversity might extend the period of

consistent operation. Alternatively, FastSLAM might be viewed as an efficient

front-end, the output of which could be fed to a more statistically correct filter.

• Higher-order geometric elements in the world are difficult to track with a mov-

ing camera. Small pieces can be more reliably estimated, but the map repre-

sentation is then fragmented. If low-order primitives could be agglomerated in

the filter or at a higher stage, then a more coherent model could be built, also

improving tracking.

• A better heuristic or more formal method for node creation would immediately

improve the accuracy and reliability of Graph SLAM. Currently, creation of new

nodes is the most vulnerable time for the system.

• The global graph optimisation algorithm of Graph SLAM is not statistically cor-

rect, because it assumes that edge estimates are independent. It also requires,

per iteration, time linear in the number of graph edges and cycle edges. The

graph optimisation might be replaced with a message-passing algorithm or a

background bundle adjustment over all state variables.

• Monocular SLAM is fragile. The tracking assumption often fails, and no recov-

ery mechanism is foolproof. A more thorough use of image information might

make SLAM more robust under unpredictable motions. Further, data associa-

tion should be reversible so that incorrect decisions can be undone.



Appendix A

Projection and Transformation
Jacobians

A.1 Point Projection Jacobians

This section describes the derivatives of the perspective-projection observation model

that takes 3D points to 2D points in the camera plane. These Jacobians are used for

pose and landmark updates in Chapter 4.

A.1.1 Euclidean Points

The observation model hC(x) first transforms a 3D point x in global Euclidean coor-

dinates into the local frame of C = (R, t) ∈ SE(3), and then projects the result, y, onto
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the 2D camera plane by dividing by depth.
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Applying the chain rule, the derivative by an arbitrary parameter α splits into two

pieces:

∂hC(x)

∂α
=

∂project(y)

∂y
· ∂(C · x)

∂α
(A.4)

The projection derivative is a common first factor to both pose and landmark observa-

tion model derivatives:

∂project(y)

∂y
=

1

z
·
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1 0 −x
z

0 1 −y
z

)

The derivative of the global-to-local transformation by landmark coordinates is sim-

ple, as the mapping is affine:

∂(C · x)

∂x
=

∂ (Rx + t)

∂x

= R (A.5)

As in Section 3.2.3, the derivative of the transformation by the camera parameters

is expressed with respect to left multiplication by an exponentiated element of the
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tangent space, ǫ ∈ R
6:

∂(C · x)

∂C
≈ ∂(exp(ǫ) · C · x)

∂ǫ
(A.6)

=
∂(exp(ǫ) · y)

∂ǫ
(A.7)

=





1 0 0
-[y]×0 1 0

0 0 1



 (A.8)

=





1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0



 (A.9)

Recall that the first three tangent space coordinates correspond to translation parame-

ters and the last three to rotation (see Section 3.2).

Combining the projection and transformation derivatives gives observation model Ja-

cobians by landmark parameters (Jx) and by pose parameters (JC):

Jx ≡ ∂hC(x)
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A.1.2 Inverse Depth Points

The observation model h∗
C for inverse depth point x∗ =

(

u′ v′ q
)T

is most easily

expressed by first converting to Euclidean coordinates:

x =
1

q





u′

v′

1



 (A.15)

Substituting this into (A.1) and (A.3) and simplifying gives the model for inverse

depth points:
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= project(qy)
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The pre-projection transformation is again linear in the landmark coordinates:

∂(C · x∗)
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Then computation of Jacobians by point and pose parameters is then straightforward.

Starting from (A.11),

J∗
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The pose Jacobian is unchanged from (A.14):

J∗
C =

∂hC(x)

∂C
= JC (A.21)

A.2 Edgelet Jacobians

This section describes the observation model for the edgelets described in Chapter 5.

There are two representations of edgelets; Euclidean coordinates and inverse depth.

A.2.1 Euclidean Edgelets

The edgelet representation is a 6-vector
(

xT dT
)T

, where the edgelet centre is x ∈ R
3

and the edgelet direction is d ∈ R
3. The observation model first transforms the edgelet

into the camera frame of pose C , and then projects the result to a centre point xp and

a direction dp in the camera plane:

X ≡ C · x = Rx + t (A.22)

D ≡ Rd (A.23)

xp = project(X) (A.24)

dp =

(

X3D1 − X1D3

X3D2 − X2D3

)

(A.25)

Note that rigid transformations change the direction vector d purely by rotation. The

Jacobians by edgelet parameters are computed using the chain rule and the point
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derivatives of Section A.1.1:

∂xp

∂X
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(A.26)
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The derivatives by pose parameters, again assuming left multiplication of C by exp ǫ,

are similarly related to the pose Jacobians for Euclidean points:

∂xp

∂ǫ
=

(

∂xp

∂X

)

·
(

I3 − [X]×
)

(A.33)

∂dp

∂ǫ
=

(

∂dp

∂X

)

·
(

I3 − [X]×
)

+

(

∂dp

∂D

)

·
(

0 − [D]×
)

(A.34)

A.2.2 Inverse Depth Edgelets

The partially initialised edgelet representation is a 6-vector
(

x∗T d∗T
)T

, along with

a fixed pose C0 = (R0, t0) ∈ SE(3) corresponding to the initial view of the landmark.

The vectors components are individually named:

x∗ ≡
(

u v q
)T

(A.35)

d∗ ≡
(

du dv dq

)T
(A.36)

Components (u, v) and (du, dv) correspond to the location and direction, respectively,

of the edgelet in the camera plane of C0. Component q describes the inverse depth
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of the edgelet in C0, and dq is its differential moving along the edge. For a pose

C = (R, t), the transformation from the initial frame to the new frame is the result

of first transforming to world coordinates and then into the new pose. This yields a

displacement transformation:

R′ ≡ R · RT
0 (A.37)

t′ ≡ t −R′t0 (A.38)

The observation model again maps the state to a centre point and direction in the

camera plane:

P ≡ R′
(

u v 1
)T

+ qt′ (A.39)

V ≡ R′
(

du dv 0
)T

+ dqt
′ (A.40)

xp = project(P) (A.41)

dp =

(

P3V1 − P1V3

P3V2 − P2V3

)

(A.42)

The Jacobians by the inverse depth edgelet parameters then follow a similar form as

for inverse depth points:

∂xp

∂P
=

∂project(P)

∂P
(A.43)

(A.44)

∂xp

∂x∗
=

(

∂xp

∂P

)

·





R′
1,1 R′

1,2 t′1
R′

2,1 R′
2,2 t′2

R′
3,1 R′

3,2 t′3



 (A.45)

∂dp

∂P
=

(

−V3 0 V1

0 −V3 V2

)

(A.46)

∂dp

∂x∗
=

(

∂dp

∂P

)

·





R′
1,1 R′

1,2 t′1
R′

2,1 R′
2,2 t′2

R′
3,1 R′

3,2 t′3



 (A.47)

∂dp

∂V
=

(

P3 0 −P1

0 P3 −P2

)

(A.48)

∂dp

∂d∗ =

(

∂dp

∂D

)

·





R′
1,1 R′

1,2 t′1
R′

2,1 R′
2,2 t′2

R′
3,1 R′

3,2 t′3



 (A.49)

(A.50)
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The Jacobians by pose tangent space parameters ǫ, where ǫ =
(

ǫT
t ǫT

ω

)T
:

∂xp

∂ǫ
=

(

∂xp

∂P

)

·
(

qI3 − [P]×
)

(A.51)

∂dp

∂ǫt

= q
∂dp

∂P
+ dq

∂dp

∂V
(A.52)

∂dp

∂ǫω

=

(

(V1P2 − V2P1) 0 (P2V3 − P3V2)
0 (V1P2 − V2P1) (P3V1 − P1V3)

)

(A.53)

∂dp

∂ǫ
=

(

∂dp

∂ǫt

∂dp

∂ǫω

)

(A.54)

A.2.3 Intercept-Slope Form

Observations of edgelets are given in intercept-slope form relative to a fixed two-

dimensional frame, determined by an origin x0 and a unit normal direction n̂ in the

camera plane (see Section 5.3.1). The vector n̂ acts as the y-axis in the intercept-slope

equation y = b + mx. The vectors x0 and n̂ are computed in the landmark prediction

phase from one particle’s estimate of the edgelet. The two components of the obser-

vation are then the parameters b and m, relative to x0 and n̂. The observation model

that takes xp and dp to intercept-slope form, and the corresponding Jacobians, are as

follows:

ĥ ≡
(

n̂1 −n0

)T
(A.55)

m =
dT

p n̂

dT
p ĥ

(A.56)

b = (xp − x0)
T

n̂ − m · (xp − x0)
T

ĥ (A.57)

∂b

∂xp

= n̂− m · ĥ (A.58)

∂d

∂dp

=
n̂− m · ĥ

dT
p ĥ

(A.59)

∂b

∂dp

= (x0 − xp)
T

ĥ
∂d

∂dp

(A.60)
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